Aus der Klinik für Augenheilkunde der Heinrich-Heine-Universität Düsseldorf Direktor: Univ.-Prof. Dr. med. G. Geerling

In-vivo Analyse der Veränderungen der Retina nach nicht-arteriitischem Zentralarterienverschluss im Akut- und Endstadium mittels optischer Kohärenztomographie (SD-OCT)

Dissertation

zur Erlangung des Grades eines Doktors der Medizin der Medizinischen Fakultät der Heinrich-Heine-Universität Düsseldorf

> vorgelegt von Silja Hanna Bairov 2022

Als Inauguraldissertation gedruckt mit Genehmigung der Medizinischen Fakultät der Heinrich-Heine-Universität Düsseldorf

gez.: Dekan: Prof. Dr. med. Nikolaj Klöcker Erstgutachter: Prof. Dr. med. Rainer Guthoff Zweitgutachter: Prof. Dr. med. Orhan Aktas

Zusammenfassung

Bei einem Zentralarterienverschluss (ZAV) kommt es infolge einer abrupten Blockade der Arteria centralis retinae (ZA), die eine Endarterie darstellt, zu einer Ischämie der inneren Netzhaut. Dies geht meist mit einem schweren und permanenten Visusverlust einher. Der ZAV lässt sich in eine akute Phase (Akutstadium), 0-7 Tage nach plötzlichem Sehverlust, und in eine finale Phase (Endstadium) nach mindestens 3 Monaten, in der keine Sehverbesserung mehr zu erwarten ist, unterteilen. Mittels der Spectral-domain-optischen Kohärenztomographie (SD-OCT) können folgende Netzhautschichten hochauflösend in-vivo nicht-invasiv dargestellt und manuell oder automatisiert guantifiziert werden: Retinales Pigmentepithel (RPE), Bruch-Membran (BM), Fotorezeptorschicht (FRK), welche aus äußeren (ASF) und inneren Segmenten der Fotorezeptoren (ISF) besteht, äußere Körnerschicht (ÄKS), innere Körnerschicht (IKS). äußere plexiforme Schicht (ÄPS), innere plexiforme Schicht (IPS), Ganglienzellschicht (GZS) und retinale Nervenfaserschicht (RNFS).

Der Arbeit liegt die Hypothese zu Grunde, dass die inneren Netzhautschichten in der akuten Phase nach einem ZAV, bedingt durch ein Ödem, an Dicke zunehmen, während sie im Endstadium durch atrophische Veränderungen dünner sind. Die Dicke der äußeren Netzhautschichten bleibt unbeeinflusst. Desweiteren wurde untersucht ob ein Zusammenhang zwischen Visus und den Schichtdicken besteht und ob die Therapieoptionen Heparinbolus und plötzliche Augeninnendrucksenkung über Kammerwasserablassung über eine Parazentese einen Einfluss auf die Schichtdicken und den Visus haben. Dazu wurden 33 Patienten mit einseitigem akutem ZAV und 17 Patienten im Endstadium des ZAV untersucht. Das jeweils gesunde Partnerauge diente als Referenz. Bei der Untersuchung wurde der Visus und ein ophthalmologischer Status erhoben. Topographisch wurden die Schichtdicken der Retina manuell an vier Messpunkten des EDTRS-Gitters (Makula (M), temporal (T1, T2) und nasal der Makula (N)) bestimmt.

Mit der Arbeit konnte nachgewiesen werden, dass sich nach einem akuten ZAV eine Zunahme der gesamten retinalen Schichtdicke im Vergleich zu den Referenzaugen an Messpunkten zeigt. Diese Zunahme ergibt sich vor allem aus der allen Schichtzunahme der RNFS. GZS+IPS. ÄPS+IKS sowie ÄKS+ISF. die jeweils eine Zunahme zeigten. Die äußersten Schichten ASF-BM zeigten keine Dickenänderungen. Im Endstadium des ZAV fand sich eine dünnere Gesamtnetzhautdicke im Vergleich zu den Referenzaugen an den Messpunkten T1, T2 und N. Dies zeigte sich vor allem durch die verdünnten Schichtdicken der RNFS, GZS+IPS und ÄPS+IKS. Die äußeren Schichten ÄKS+ISF und ÄSF-BM zeigten sich nicht verdünnt. Es zeigte sich ein Zusammenhang zwischen den Schichtdicken und dem Visus im Endstadium des ZAV an den Messpunkten global M und ÄKS+ISF T1. Desweiteren zeigte sich eine Verdünnung am Messpunkt ÄSF-BM N im Endstadium nach Heparinbolus. Die Schichtdickengesamtzunahme bei akutem ZAV ist durch ein Ischämie-bedingtes Netzhautödem zu erklären. Die Schichten der inneren Netzhaut (GZS+IPS, ÄPS+IKS und ÄKS+ISF), die normalerweise von den retinalen Gefäßen versorgt werden, sind am stärksten betroffen. Dies stimmt mit histologischen Beobachtungen nach ZAV am Mausmodell überein. Die äußere Netzhaut (ÄSF-BM), die durch die Choriokapillaris versorgt wird, zeigt keine Dickenänderung, was sich ebenfalls mit experimentellen Untersuchungen deckt. Die starke Dickenabnahme im Endstadium der ZAV, vor allem der inneren Schichten (GZS+IPS, ÄPS+IKS) ist konsistent zu Studien, bei denen die Dickenabnahme auf die Verringerung der Zahl der Zellkerne der entsprechenden Schichten zurückgeführt wurde. Die Schichtdickenänderungen der Netzhaut nach ZAV in der OCT, spiegeln die Veränderungen auf zellulärer Ebene wider. Um eine sichere prognostische Aussage über den Endvisus und die Auswirkung der Therapieoptionen nach ZAV zu treffen, sind weitere Untersuchungen bzw. ein größeres Patientenkollektiv notwendig.

Abstract

Central retinal artery occlusion (CRAO) causes severe ischemia of the inner retina due to the abrupt blockage of the central retinal artery, which is an endarteria. This is usually accomanied by a severe and permanent loss of vision. CRAO is subdivided into an acute phase, from sudden loss of vision, to a final phase lasting at least 3 months, when vision improvement is no longer expected.

Using Spectral Domain Optical Coherence Tomography (SD-OCT) (Spectralis-OCT, Heidelberg Engineering Inc., Heidelberg), the following retinal layers can be non-invasively displayed in high resolution in vivo and manually or automatically quantified: retinal pigment epithelium (RPE), Bruch-Membrane (BM), photoreceptor layer (PRL), which consists of outer (OPS) and inner segments of the photoreceptors (IPS), outer nuclear layer (ONL), outer plexiform layer (OPL), inner nuclear layer (INL), inner plexiform layer (IPL), ganglien cell layer (GCL), and retinal nerve fiber layer (RNFL).

The study is based on the fact that in the acute phase after a CRAO an edema-induced increase of the inner retinal layers, while in the final stage an atrophy-related decrease, can be detected. The outer retinal layers remain unchanged in thickness. Furthermore, it was investigated whether there is a connection between visual acuity and the layer thickness and whether the therapy options heparin bolus and paracentesis have an influence on the layer thickness and the visual acuity. We examined 33 patients with unilateral acute CRAO and 17 patients with final ZAV. The healthy partner eye served as a reference. During the examination, the visual acuity and an ophthalmologic status were recorded. Topographically, the layer thicknesses of the retina were determined manually at four measuring points of the EDTRS lattice (macula (M), temporal (T1, T2) and nasal of the macula (N)).

In our study it could be shown that after an acute CRAO an increase of the total retinal layer thickness compared to the reference eyes at all measuring points. The increase after acute CRAO is mainly due to the shift increase of the GCL+IPL, OPL+INL and ONL+IPS, which also showed an increase at all measuring points. The outermost layers OPS-BM showed no thickness changes. In the final stage of the CRAO, a thinner total retinal thickness was found in comparison to the reference eyes at the measurement points N, T1, T2. This was demonstrated above all by the thin layer thicknesses of the RNFL, GCL+IPL, OPL+INL. The outer layers ONL+ISP and OSP-BM were not shown to be thinned. There was a connection between the retinal layer thickness and the final visual acuity at the final state of CRAO at the measuring points global M and ONL+ISP T1. Furthermore, there was a dilution at the measuring point OPS-BM N in the final stage after heparin bolus.

The overall layer thickness increase in acute CRAO can be explained by ischemiarelated retinal edema. The layers of the inner retina (GCL+IPL, OPL+INL and ONL+ISP), which are normally supplied by the retinal vessels, are the most affected. This is consistent with histological observations after CRAO on the mouse model. The outer retina (OSP-BM), which is supplied by the choriocapillaris, shows no change in thickness, which also coincides with experimental studies. The large decrease in the thickness of the final CRAO, especially the inner layers (GCL+IPL, OPL+INL) is consistent with studies in which the decrease in thickness was attributed to the reduction in the number of nuclei of the respective layers. The changes in the thickness of retinal layers after CRAO, measured by OCT, reflect the changes at the cellular level. Further examinations are necessary in order to make a reliable prognostic statement about the final visual acuity after CRAO. In order to make a reliable prognostic statement about the final visual acuity and the effect of the therapy options according to ZAV, further examinations or a larger group of patients are necessary.

Inhaltsverzeichnis

1 Einleitung	1
1.1 Anatomie und Physiologie der Retina	1
1.2 Optische Kohärenztomographie	4
1.3 Zentralarterienverschluss	6
1.3.1 Epidemiologie	6
1.3.2 Pathophysiologie eines Zentralarterienverschlusses	6
1.3.3 Klinik und Diagnostik	8
1.3.4 Therapie	10
1.4 Hypothesen und Ziele	11
2 Patienten und Methoden	12
2.1 Einschlusskriterien	12
2.2 Patientenkollektiv	12
2.3 Messmethodik Optische Kohärenztomographie	13
2.4 Datenauswertung und Statistik	18
3 Ergebnisse	19
3.1 Schichtdickenveränderungen	19
3.1.1 Schichtdickenänderungen der gesamten Netzhaut (global)	19
3.1.2 Schichtdickenänderungen der retinalen Nervenfaserschicht (RNFS)	20
3.1.3 Schichtdickenänderungen der Ganglienzellschicht und inneren plexiformer Schicht (GZS+IPS)	ו 22
3.1.4 Schichtdickenänderungen der äußeren plexiformen Schicht und der innere Körnerschicht (ÄPS+IKS)	n 23
3.1.5 Schichtdickenänderungen der äußeren Körnerschicht und der inneren Segmente der Fotorezeptoren (ÄKS+ISF)	25
3.1.6 Schichtdickenänderungen der äußeren Segmente der Fotorezeptoren bis z Bruch`schen Membran (ÄSF-BM)	zur 26
3.2 Visus und Korrelation des Visus mit den Schichtdicken	28
3.3 Einfluss der Therapieoptionen auf die Schichtdicken und den Visus	29
3.3.1 Einfluss des Heparinbolus	29
3.3.2 Einfluss der plötzlichen Augendrucksenkung per Parazentese	32
4.1 Morphologie	36
4.1.1 Morphologie der Gesamtnetzhautdicke	36
4.1.2 Morphologie der inneren Schichten RNFS, GZS+IPS und ÄPS+IKS	37
4.1.3 Morphologie der äußeren Schichten ÄKS+ISF und ÄSF-BM	38

4.1.4 Innere versus äußere Netzhautschichten - Vergleich mit der Literatur	38
4.2 Visuskorrelation	39
4.3 Therapieansätze	41
4.4 Zusammenfassung und Schlussfolgerung	42
5 Literaturverzeichnis	44

Abkürzungsverzeichnis

Abb	Abbildung
AAV	Arterienastverschluss
ÄKS	äußere Körnerschicht
ÄPS	äußere plexiforme Schicht
ÄSF	äußere Segmente der Fotorezeptoren
A-Scan	amplitude-mode-Scan
BM	Bruch'sche Membran
BSG	Blutsenkungsgeschwindigkeit
CRAO	central retinal artery occlusion
CrP	C-reaktives Protein
FAG	Fluoreszenzangiographie
FR	Fotorezeptorschicht
GZS	Ganglienzellschicht
IKS	innere Körnerschicht
IPS	innere plexiforme Schicht
ISF	innere Segmente der Fotorezeptoren
ОСТ	Optische Kohärenztomographie
PCA	posteriore Ziliararterien
PSK	Paired-Samples-Korrelation
RNFS	retinale Nervenfaserschicht
RPE	retinales Pigmentepithel
rtPa	rekombinanter Gewebe-Plasminogen-Aktivator
SD-OCT	Spectral-domain-Optische Kohärenztomographie
Tab	Tabelle
TD-OCT	Time-domain-Optische Kohärenztomographie
VS	versus
ZA	Zentralarterie

ZAV	Zentralarterienverschluss
ZV	Zentralvene

1 Einleitung

Von Graefe beschrieb 1859 erstmalig den Zentralarterienverschluss (ZAV) als ophthalmologischen Apoplex (vonGraefes 1859). Durch die Verlegung des Lumens der Zentralarterie (ZA) werden die nachgeschalteten Netzhautareale nicht mehr mit Sauerstoff und Nährstoffen versorgt. Infolge der Ischämie der betroffenen Netzhautschichten kommt es zunächst zu einem Ödem und im Verlauf zu einer Atrophie der Netzhaut (Spencer W. 2011). Ein ZAV führt zu einem plötzlichen, schmerzlosen und meist dauerhaften Visusverlust. Effektive Therapiemöglichkeiten gibt es aktuell nicht (Schmidt, Schulte-Monting et al. 2002, Rudkin, Lee et al. 2010, Varma, Cugati et al. 2013, Wu, Gao et al. 2016, Dattilo, Newman et al. 2018).

1.1 Anatomie und Physiologie der Retina

Die Retina (Netzhaut) ist ein mehrschichtiges hochspezialisiertes neurales Gewebe, in dem Lichtenergie zu, vom ZNS interpretierbaren Signalen umgewandelt wird. Zentral befindet sich die Papille, an der die Axone der Ganglienzellen zusammenlaufen, um als Nervus opticus das Auge zu verlassen. Gleichzeitig tritt hier die Zentralarterie (ZA) in das Auge ein, sowie die Zentralvene (ZV) aus dem Augapfel aus. Temporal der Papille befindet sich die Makula mit der Fovea und der Foveola, die die Stelle des schärfsten Sehens darstellt (Abb.1).

Abb. 1: Bild eines gesunden Augenhintergrunds: Papille, Arterien und Venen, sowie Makula mit Fovea und Foveola (Quelle: Datenbank der Augenklinik des Universitätsklinikums Düsseldorf, Beschriftung eingefügt)

Histologisch lässt sich die Retina in unterschiedliche Schichten aufteilen: Die Bruch'sche Membran (BM), das retinale Pigmentepithel (RPE), die Fotorezeptoren (Zapfen und Stäbchen), die aus Außen- und Innensegmenten wie aus Zellkörpern bestehen. Die Zellkörper bilden die äußere Körnerschicht (ÄKS). Die äußere plexiforme Schicht (ÄPS) besteht aus den Axonen der Bipolarzellen, in der auch die Synapsen zu den Fotorezeptorzellen liegen. Die Zellkerne der Bipolarzellen bilden die innere Körnerschicht (IKS). In dieser Schicht befinden sich außerdem die Horizontalzellen. Die innere plexiforme Schicht (IPS) wird durch die Axone der Bipolarzellen gebildet. Weiter innen befindet sich die Ganglienzellschicht (GZS), die sich aus den Zellkernen der Ganglienzellen sowie aus verschiedener Typen amakriner Zellen zusammensetzt. Die Axone der Ganglienzellen bilden die retinale Nervenfaserschicht (RNFS) (Abb.2) (Kolb 1995, Anderhuber 2012).

Mit der Spectral-domain-Optischen Kohärenztomographie (SD-OCT) lassen sich folgende Netzhautschichten hochauflösend in-vivo nicht-invasiv darstellen und manuell oder automatisiert quantifizieren: Retinales Pigmentepithel (RPE), Bruch'sche Membran (BM), Fotorezeptorschicht (FRK), äußere Körnerschicht (ÄKS), äußere plexiforme Schicht (ÄPS), innere Körnerschicht (IKS), innere plexiforme Schicht (IPS), Ganglienzellschicht (GZS) und retinale Nervenfaserschicht (RNFS) (Abb.2) (Sakata, Deleon-Ortega et al. 2009, Puzyeyeva, Lam et al. 2011).

Abb. 2: Ausschnitt eines OCT-Bildes der Netzhaut sowie schematischer Aufbau der Netzhaut und der Netzhautschichten: Dargestellt ist ein Ausschnitt eines OCT-Bildes einer gesunden Netzhaut mit den folgenden Netzhautschichten: Die retinale Nervenfaserschicht, die Ganglienzellschicht, die innere plexiforme Schicht, die innere Körnerschicht, die äußere plexiforme Schicht, die äußere Körnerschicht, die äußere Grenzmembran, die Innen- und Außensegmente der Fotorezeptoren, das retinale Pigmentepithel mit Bruch'scher Membran und Aderhaut. Rechts daneben sind schematisch die Zellen bzw. die Zellteile, die der jeweiligen Schicht im OCT entsprechen, dargestellt (HeidelbergEngineering 2010, Anderhuber 2012). (Quelle des OCT-Ausschnitts: Datenbank der Augenklinik des Universitätsklinikums Düsseldorf, Beschriftung eingefügt)

Die Netzhaut ist im Bereich der Foveola, im Vergleich zur unmittelbaren Umgebung, besonders dünn (foveale Senke). Hier befinden sich nur Zapfen, die das photopische Sehen (Farbsehen) ermöglichen. Diese sind hier nahezu 1:1 mit den Ganglienzellen verschaltet. Die bei der übrigen Netzhaut darüber liegenden Schichten sind hier seitlich angeordnet, weshalb die Netzhaut parafoveolär am dicksten ist (Anderhuber 2012). In der Peripherie befinden sich neben den Zapfen vorwiegend Stäbchen, die das Sehen bei geringem Licht (skotopisch) ermöglichen (Sachsenweger 2003, Anderhuber 2012).

Die inneren Schichten der Retina werden über die Zentralarterie mit Blut versorgt (20-30% der gesamten Blutversorgung der Retina), die äußeren Schichten der Netzhaut über die Aderhaut (Choroidea, 65-85% der Blutversorgung) (Kolb 1995). Beide blutversorgenden Systeme perfundiert die Arteria ophthalmica die aus der Arteria carotis interna entspringt (Benninghoff A.; Drenckhahn 2008). Die Gefäßwand der Zentralarterie besteht Arterien-typisch aus einer Intima, Lamina elastica interna, Media und Adventitia (Kanski J. 2012). Die Zentralarterie teilt sich an der Papille in zwei Hauptäste auf, die sich weiter in jeweils einen nasalen und einen temporalen Ast aufteilen (Varma, Cugati et al. 2013). Diese verzweigen sich weiter und bilden das Kapillarnetz. Die Kapillargefäße bestehen aus glatter Muskulatur, Lamina elastica interna und Endothel (Kanski J. 2012). Drei Kapillarnetze lassen sich unterscheiden: Das radiäre peripapilläre, das innere und das äußere Kapillarnetz. Die radiären peripapillären Kapillaren befinden sich innerhalb der RNFS bis 4-5mm von der Papille entfernt. Die inneren Kapillaren befinden sich innerhalb der GZS. Die äußeren Kapillaren bilden ein Netzwerk, welches sich über die IPS, ÄPS sowie IKS erstreckt. Die Kapillaren bilden Anastomosen untereinander (Kolb 1995). Im Zentrum der Fovea ist eine ca. 450-600µm große Kapillargefäß-freie Zone (foveale avaskuläre Zone).

Die choroidalen Arterien entspringen aus den posterioren kurzen und langen Ziliararterien sowie dem peripapillären Zinn-Haller'schen Gefäßkranz. Die choroidalen Arterien verzweigen sich zu drei Kapillarnetzen - dem äußeren (meist skleralen), dem mittleren und dem inneren Netz. Die Verteilung ist innerhalb der Aderhaut über die gesamte Fläche gleichmäßig (Kolb 1995). Bei bis zu 10% der Menschen wird die innere Netzhaut im papillomakulären Bündel durch ein zilioretinales Gefäß versorgt, das sich von den Ziliararterien abzweigt (Sachsenweger 2003).

1.2 Optische Kohärenztomographie

Die optische Kohärenztomographie (OCT) basiert auf dem Prinzip der Interferometrie. Von einer Lichtquelle wird ein Lichtstrahl über einen Interferometer, meist ein Michelson Interferometer, auf das zu untersuchende Gewebe, in dieser Arbeit auf die Netzhaut, geleitet. Als Referenz wird ein Teil des Lichtstrahls auf einen Spiegel umgeleitet. Die Lichtstrahlen werden jeweils reflektiert und beim Entstehen eines Interferenzmusters von einem Detektor in ein Bild umgewandelt. Über den Referenzarm kann eine unterschiedliche Tiefenmessung eingestellt werden (Drexler and Fujimoto 2008, Podoleanu 2012), (Abb.3).

Abb. 3: Schematische Darstellung der OCT: Von der Lichtquelle wird ein Lichtstrahl über den Interferometer auf das zu untersuchende Gewebe geleitet. Gleichzeitig wird ein Teil des Lichtstrahls auf einen Spiegel umgeleitet. Die Lichtstrahlen werden reflektiert und von dem Detektor in ein Bild umgewandelt (Podoleanu 2012).

Die frühe Form der Untersuchungsmethode, die time-domain-OCT (TD-OCT), ermöglicht lediglich eine begrenzte Geschwindigkeit der Darstellung: Bis zu 400 A-Scans (amplitude-mode-Scans), die jeweils einen Reflektionspunkt vom Gewebe darstellen, pro Sekunde sind hier möglich. Bei der neueren Methode, der Spectraldomain-OCT (SD-OCT), wird ein Detektor eingesetzt, der die Fourier-Analyse nutzt. Von ihm können 20.000 bis 40.000 A-Scans pro Sekunde in ein Bild umgewandelt werden. Somit kann eine Echtzeitmessung der Gewebe erfolgen und zum Beispiel eine Software für Eye-Tracking eingesetzt werden, wobei die automatische Aufnahme derselben Region der Netzhaut trotz Augenbewegungen sichergestellt ist. Die Eindringtiefe in streuendes Gewebe liegt bei 1-3mm. Die axiale Auflösung ist abhängig von der benutzten Wellenlänge und beträgt bei der SD-OCT bis zu 7 μ m (Drexler and Fujimoto 2008, Puzyeyeva, Lam et al. 2011, Podoleanu 2012, Dominguez-Vicent, Brautaset et al. 2019, Meyer, Karri et al. 2021).

1.3 Zentralarterienverschluss

1.3.1 Epidemiologie

Die Inzidenz des ZAV beträgt 1:100.000. Das Verhältnis Männer zu Frauen beträgt 2:1 (Mirshahi 2008). Bei 80% aller Patienten nach ZAV bleibt die Sehschärfe dauerhaft bei 0,05 oder schlechter (Varma, Cugati et al. 2013).

1.3.2 Pathophysiologie eines Zentralarterienverschlusses

Ein ZAV entsteht durch die nicht-arteriitische oder arteriitische Verlegung des Zentralarterienlumens. Die häufigste nicht-arteriitische Ursache ist ein Embolus. Man geht davon aus, dass der Verschluss der Zentralarterie meist im Bereich der physiologischen Lumeneinengung am Durchtritt durch die Dura mater bzw. am Durchtritt im Bereich der Lamina cribrosa erfolgt (Abb.4) (Hayreh 1971, Varma, Cugati et al. 2013).

Abb. 4: Typische Lokalisation eines Embolus. Dargestellt ist schematisch ein Augapfel mit Sklera, Aderhaut und Netzhaut und die Linse, sowie der Sehnerv (Nervus opticus) mit der harten und weichen Hirnhaut (Dura mater, Pia mater) und der Lamina cribrosa, durch die die retinalen Nervenfasern in den Sehnerven eintreten. Die vermutlich häufigste Lokalisation eines Embolus als Ursache eines ZAV befindet sich an der physiologischen Einengung der Zentralarterie am Durchtritt durch die Dura mater (blauer Stern) sowie am Durchtritt durch die Lamina cribrosa (grüner Stern) (Varma, Cugati et al. 2013).

Etwa 75% der Emboli bestehen aus Cholesterin, die auch klinisch Hollenhorst-Plaques genannt werden. Diese Emboli entstammen meist von Plaques aus dem Bereich der Karotis-Bifurkation. Etwa 15% aller Emboli bestehen aus Thrombozyten bzw. Fibrin

und etwa 5% aus Kalk. Weitere nicht-arteriitische Ursachen für einen ZAV treten im Zusammenhang mit Blutungen unter einem artherosklerotischen Plaque, mit Aneurysmata, mit Sichelzellen-Hämoglobinopathien, mit Thrombophilie-Erkrankungen wie der Homozysteinämie und dem Antiphospholipid-Antikörper-Syndrom, mit Gefäßspasmen und mit Kreislaufversagen, auf (Joussen 2012, Kanski J. 2012, Varma, Cugati et al. 2013).

In etwa 4,5% aller Fälle liegt eine arteriitische Form des ZAV vor. Diese wird meist durch eine Riesenzellarteriitis (Morbus Horton) hervorgerufen (Varma, Cugati et al. 2013).

Die Folge eines ZAV ist zunächst ein Ischämie-bedingtes Ödem der Netzhaut. Die inneren Netzhautschichten sind vorwiegend betroffen: Am stärksten die RNFS und die GZS, weiterhin die IKS und IPS. Nach kurzer Zeit setzt eine Koagulationsnekrose ein, die durch eine Zellschwellung und Denaturierung der zytoplasmatischen Proteine gekennzeichnet ist. Die Gewebestruktur bleibt jedoch zunächst erkennbar (Höfler 2019). Im Mausmodel wurde gezeigt, dass 3-21 Stunden nach ZAV Zellkerne der Netzhaut pyknotisch werden und Vakuolen entstehen. Nach 21 Tagen zeigte sich eine deutlich verminderte Zellkernzahl und ein fibrotischer Umbau der Netzhautschichten mit Einwanderung von Mastzellen und Phagozyten (Goldenberg-Cohen, Dadon et al. 2008). Nach einem Monat zeigt sich eine "Pseudonormalisation" der Netzhautdicke in der SD-OCT und nach drei Monaten eine deutliche Abnahme der Gesamtschichtdicke der Netzhaut, die im Sinne einer ausgebildeten Atrophie anschließend keine weitere Änderung zeigt (Naumann 1997, Hayreh, Zimmerman et al. 2004, Cho, Kim et al. 2010, Hayreh 2011, Spencer W. 2011, Cornut, Bieber et al. 2012, Ritter, Sacu et al. 2012, Schnichels, Blak et al. 2017). Dieses fortgeschrittene Stadium wird im Folgenden als End-, finales oder fortgeschrittenes Stadium bezeichnet.

Abhängig von der Re-Perfusion werden unterschiedliche Schweregrade der retinalen Ischämie nach ZAV beschrieben. Dabei ist der Zeitpunkt des Wiedereintretens der Re-Perfusion für den Schweregrad der Ischämie wichtig. In verschiedenen Rhesusaffen-Modellen wurde nachgewiesen, dass eine Re-Perfusion innerhalb von 12-15 Minuten nach ZAV eine vollständige Erholung der Netzhaut zulässt, während eine Ischämie länger als 4 Stunden die Netzhaut dauerhaft schädigt (Yu, Pang et al. 2014, Tobalem, Schutz et al. 2018).

1.3.3 Klinik und Diagnostik

Nach einem akuten ZAV entsteht eine plötzliche schmerzlose einseitige Visusminderung von 0,05 oder schlechter (Hayreh and Zimmerman 2005). Sie tritt typischerweise in der ersten Tageshälfte auf (Joussen 2012). Bei Vorhandensein eines zilioretinalen Gefäßes ist der Visus naturgemäß besser, wenn es die Fovea perfundiert (Varma, Cugati et al. 2013). Im Spontanverlauf ist in 21-35% nach 6 Stunden bis 3 Tagen eine Visuserholung nach ZAV unbehandelt um bis zu 2 Visusstufen möglich. Zehn Tage nach ZAV ändert sich der Visus meist nicht mehr (Goldenberg-Cohen, Dadon et al. 2008, Hayreh 2014).

Funduskopisch zeigt sich das typische Bild der weißlich-ödematösen Netzhaut mit kirschrotem Fleck, der aus der rötlich durchschimmernden Choroidea des relativ dünnen Zentrums der Fovea resultiert (Kanski J. 2012).

Die arteriellen retinalen Gefäße sind meist enggestellt, und in 20-40% lassen sich Emboli finden (Wolf, Hoberg et al. 1989) (Abb.5a).

Nach der Akutphase des ZAV bildet sich das Netzhautödem nach 4-6 Wochen allmählich zurück, die Netzhaut atrophiert und die Papille ist meist blass. Abhängig vom Grad der Rekanalisierung bleiben die retinalen Arterien verengt (Joussen 2012) (Abb.5b).

Abb. 5: a) Fundusbild kurz nach Eintreten eines ZAV: Zu erkennen sind die typischen Merkmale eines akuten ZAV: Ein kirschroter Fleck, verdünnte Arterien und ein Netzhautödem. Hier sind auch Emboli in den Arterien sichtbar. b) Bild eines Fundus nach 4 Monaten nach ZAV. Die Papille zeigt sich abgeblasst und die Arterien hier noch immer verengt. (Quelle: Datenbank der Augenklinik des Universitätsklinikums Düsseldorf, Beschriftung eingefügt)

In der Akutphase eines ZAV zeigt sich in der Fluoreszeinangiographie meist eine deutlich verzögerte retinale arterielle Füllung sowie eine arteriovenöse Passagezeit (Abb.6). Innerhalb der ersten Tage nach akutem ZAV normalisiert sich die arterielle Füllung jedoch meist wieder (Rekanalisierung). Im Verlauf und im Endstadium des ZAV zeigt sich meist keine Füllungsverzögerung mehr, im Gegensatz zum chronischen ZAV (Wolf, Hoberg et al. 1989, Ahn, Woo et al. 2015).

Abb. 6: FAG nach akutem ZAV: a) deutlich verzögertes Eintreffen der Fluoreszeins in den retinalen Arterien im Bereich der Papille nach 22 Sekunden. Zum Vergleich: Die normale Füllungszeit (Arm-Retina-Zeit) beträgt altersabhängig 12-15 Sekunden. Nach 52 Sekunden (b) und nach 1 Minute und 36 Sekunden (c) ist die Füllung der retinalen Arterien noch immer nicht abgeschlossen. (Quelle: Datenbank der Augenklinik des Universitätsklinikums Düsseldorf, Beschriftung eingefügt)

1.3.4 Therapie

Bis heute existiert für einen akuten nicht-arteriitischen ZAV keine Therapiemöglichkeit mit hohem Evidenzgrad für ihre Visus-bessernde Wirksamkeit (Biousse, Calvetti et al. 2007, Rudkin, Lee et al. 2010, Cugati, Varma et al. 2013, Mehta, Marco et al. 2017, Limaye, Wall et al. 2018, Sharma, Dattilo et al. 2018, Sharma, Newman et al. 2019).

Folgende Therapieansätze gibt bzw. gab es, mit dem Ziel, die Durchblutung nach ZAV wiederherzustellen: Lyse (systemisch oder lokal mittels rekombinantem Gewebe-Plasminogen-Aktivator (rtPa), Urokinase, Heparinbolus oder mittels YAG-Lasertherapie) oder durch die angestrebte Verlagerung des Embolus mittels Bulbusmassage, per Augeninnendrucksenkung mittels topischer Antiglaukomatosa oder systemischer Acetazolamidgabe bzw. der Vorderkammerwasserablassung mittels Parazentese. Auch die Erweiterung der retinalen Arterien mit hyperbarem Sauerstoff wird beschrieben (Rudkin, Lee et al. 2009, Joussen 2012, Varma, Cugati et al. 2013, Man, Hecht et al. 2017, Mehta, Marco et al. 2017, Olsen, Pulido et al. 2017, Tobalem, Schutz et al. 2018).

Nach den Empfehlungen der aktuellen deutschen Leitlinien wird die Augeninnendrucksenkung mittels Parazentese explizit nicht mehr empfohlen, da das Risiko einer Verletzung der Augenstrukturen den fraglichen Effekt überwiegt. Zur Zeit der Datenerhebung für diese Arbeit wurde dieses Vorgehen jedoch empfohlen (DOG 2016). Der Nutzen der Heparingabe ist ebenfalls nicht nachgewiesen und wird deshalb aktuell, im Gegensatz zur Zeit der Datenerhebung, nicht mehr empfohlen (DOG 2016).

Die Wirksamkeit der Lysetherapie mit rekombinantem Gewebe-Plasminogen-Aktivator (rtPa) oder Urokinase systemisch oder lokal wurde in verschiedenen Studien getestet, die eine Visusverbesserung bei bis zu 35% zeigte. Allerdings traten gravierende Nebenwirkungen wie Hirnblutungen bei der systemischen Anwendung auf, weshalb die Lysetherapie obsolet ist (Feltgen, Neubauer et al. 2006, Schumacher, Schmidt et al. 2010, Chen, Lee et al. 2011, Nowak, Amin et al. 2012, Pielen, Pantenburg et al. 2015, Takata, Nitta et al. 2018).

Die Therapie mit einem Thrombozytenaggregationshemmer (z.B. ASS 100) dient der Prävention eines erneuten ischämischen Ereignisses am Auge oder einem anderen Endorgan. Die Ursachenabklärung beinhaltet die Abklärung und Aufdeckung einer möglichen thrombembolischen Quelle sowie Grunderkrankungen wie einer Hypercholesterinämie und Thrombophilie, welche medikamentös behandelt werden können (Hayreh 2011, Joussen 2012). Bei etwa 64% der betroffenen Patienten wird ein hämodynamischer arteriosklerotischer Risikofaktor für ein Verschlussereignis neu diagnostiziert (Rudkin, Lee et al. 2010, Hayreh 2011, DOG 2016, Limaye, Wall et al. 2018, Sharma, Dattilo et al. 2018).

1.4 Hypothesen und Ziele

Das Ziel der Studie war es herauszuarbeiten, inwieweit welche Netzhautschichten anhand von Dickenänderung in der OCT nach einem ZAV sowohl in der akuten wie auch in der finalen Phase beteiligt bzw. quantifizierbar sind (automatisch oder manuell gemessen).

Auch sollte untersucht werden, inwieweit die gemessenen retinalen Schichtdickenänderungen mit dem Visus korrelieren und ob es Hinweise darauf gibt, dass die durchgeführten therapeutischen Maßnahmen die retinalen Schichtdicken und den Endvisus beeinflusst haben könnten.

2 Patienten und Methoden

2.1 Einschlusskriterien

Als Studiendesign wurde eine retrospektive Querschnittsanalyse gewählt. Das Patientenkollektiv bestand aus allen Patienten im Akutstadium eines ZAV und/oder im Endstadium eines ZAV, die sich von 2013 bis 2015 in der Augenklinik des Universitätsklinikums Düsseldorf vorstellten und die OCT-untersucht waren. Als Kontrollgruppe dienten die gesunden Partneraugen.

Patienten mit einem zilioretinalen Gefäß wurden ausgeschlossen. Ebenfalls nicht eingeschlossen wurden Patienten mit Augenerkrankungen oder -verletzungen in der Vergangenheit, bei welchen ein vitreoretinaler Eingriff erforderlich war sowie Patienten bei denen eine bekannte Papillenatrophie, Glaukom, Retina- oder Makulaerkrankung vorlag.

2.2 Patientenkollektiv

Kollektiv mit akuter Phase des ZAV

33 Patienten (davon 18 weibliche) wurden mit akutem nicht-arteriitischem ZAV analysiert. Das mittlere Alter betrug $69,5 \pm 16,3$ Jahre. Der Median lag bei 73,6 Jahren (Spanne 19,6 bis 94,7 Jahren). Das mittlere Verschlussalter lag anamnestisch bei 2,0 ± 1,27 Tagen (Median bei 2,0 Tagen, Spanne 0 bis 7 Tage).

15 Patienten erhielten einen Heparinbolus zur Gerinnungshemmung und Emboluslösung. Bei drei Patienten wurde eine Parazentese zur Intraokulardruck (IOD)-Senkung durchgeführt.

Kollektiv in fortgeschrittener Phase des ZAV

17 Patienten (davon 8 weibliche) wurden mit Endstadium eines nicht-arteriitischen ZAV in die Analyse eingeschlossen. Das mittlere Alter der Patienten lag bei 70,3 \pm 9,8 Jahren (Median 72,7 Jahre, Spanne von 24,8 bis 86,8 Jahre). Die mittlere Verschlusszeit lag bei 185,5 \pm 102,7 Tagen, der Median bei 126 Tagen (Spanne von 98 bis 558 Tage). Ein Patient bekam initial bei Erstdiagnose des ZAV eine Parazentese und zwei einen Heparinbolus.

Alle Patienten erhielten eine eingehend ophthalmologische Untersuchung mit einer Visuserhebung, Untersuchung des vorderen Augenabschnitts, einer Tensiomessung, einer Funduskopie in Mydriasis, einer SD-OCT-Untersuchung sowie eine Fluoreszenz-

Angiographie. Die Untersuchung der Patienten in der akuten Phase nach ZAV innerhalb der ersten sieben Tage nach Auftreten der Symptomatik des ZAV statt. Die Patienten mit Endstadium eines ZAV wurden mindestens 3 Monaten nach Verschlussereignis untersucht.

Kollektiv der Referenzgruppe

Bei 36 Patienten (17 weiblich) erfüllte das Partnerauge alle entsprechenden Kriterien um als Kontrollauge zu dienen. Das mittlere Patientenalter betrug 69,0 \pm 11,1 Jahre, Median 71,7 Jahre (Spanne von 19,6-86,8 Jahre).

2.3 Messmethodik Optische Kohärenztomographie

Die OCT-Aufnahmen dieser Arbeit wurden mit dem OCT- und HRA- Gerät von Spectralis®, Heidelberg Engineering[™] durchgeführt. Die Makula der Patienten wurde mittels fovealer horizontaler SD-OCT-Posterior-Pole-Volumenscans (Scan-Breite 30°x 25°) mit Eye-Track-Funktion untersucht. Der Messwinkel betrug 7°, wodurch sichergestellt war, dass der foveoläre OCT-Scan die Mitte der Papille anschneidet (HeidelbergEngineering 2010).

Zur Vermessung der Schichten wurde jeweils der Scan, der SD-OCT der die Foveola darstellt, verwendet. Durch das Programm (Software Version 5.1) wurde sichergestellt, dass dieser Schnitt auch das Zentrum der Papille schneidet, so dass die Messpunkte von Auge zu Auge die gleichen waren. Die Retinaschichtdicken wurden fovealär (M), auf halbem Abstand zwischen Makula und Papille (N), dem gleichen (T2), bzw. doppelten Abstand (T1) nach temporal der Makula manuell mit dem Kalipper der Software ausgemessen (Abb.7).

Die verschiedenen Retinaschichten wurden durch manuelles Verschieben der Messlinien mit der geräteeigenen Retinadickenmess-Software (Thickness-Profile) bestimmt. Die Schichtdickenergebnisse wurden so jeweils von dem Programm ausgemessen und angezeigt (Abb.8).

Abb. 7: Schematische Darstellung der Messmethodik: Darstellung der Messpunkte T1, T2, M und N sowie die gemessenen zusammengefassten Schichten RNFS, GZS+IPS, ÄPS+IKS, ÄKS+ISF, ÄSF-BM beispielhaft an einer gesunden Netzhaut a) Messpunkte T1, T2, M und N (rote Kreuze) in einer Dickenkarte der SD-OCT (die jeweilige Farbkodierung entspricht der Netzhautdicke in μm), b) Die Messpunkte sind übertragen im Schnittbild des foveolären posterioren Retina-Scans einer gesunden Netzhaut dargestellt. Zudem sind die einzelnen gemessenen Retinaschichten (schwarze Striche) im selben posterioren Volumen-Scan der Retina dargestellt. (Quelle: SD-OCT-Datenbank der Augenklinik des Universitätsklinikums Düsseldorf, Beschriftung eingefügt)

Abb. 8: Beispiel für die Vermessung der Gesamtschichtdicke (global) am Messpunkt M. Abgebildet ist eine Software-Ansicht des SD-OCT Spectralis Heidelberg Engineering Version 5.1 "Thickness-Profile". Hier wurde beispielhaft eine gesunde Netzhaut eines rechten Auges vermessen. Links oben findet sich ein Fundus-Bild, rechts daneben ein posteriorer Volumenscan der die foveale Depression darstellt. Eingestellt zur Vermessung ist hier beispielhaft die Gesamtschichtdicke (global) im Bereich des Messpunkts M. Hier beträgt die Gesamtschichtdicke 232µm, welches sich im unteren Feld ablesen lässt. (Quelle: SD-OCT-Datenbank der Augenklinik des Universitätsklinikums Düsseldorf)

Die Geräte-eigene Software (Heidelberg Engineering Version 6.1.1) zur automatischen Messung der Schichten einer Netzhaut wurde soweit wie möglich eingesetzt. Zeigte die automatische Messung Artefakte, wurden die Kalipper manuell plaziert.

Bestimmt wurde die gesamte Schichtdicke (global). Während der Messungen zeigte sich, dass sich bestimmte Schichten im akutem ZAV wegen Ödem oder im Endstadium wegen Atrophie nicht sicher von den angrenzenden Schichten abgrenzen ließen (Abb. 9 und 10). Bestimmte Schichten wurden daher für die Messung zusammengefasst. Die retinale Nervenfaserschicht (RNFS) war stets gut abgrenzbar und messbar. Die Ganglienzellschicht und plexiforme Schicht (GZS+IPS) wurden innere zusammengefasst vermessen, genauso wie die äußere plexiforme Schicht und innere nukleäre Schicht (ÄPS+IKS). Desweiteren wurden die äußere nukleäre Schicht und inneren Segmente der Fotorezeptoren (ÄKS+ISF), sowie die Schicht der äußeren Segmente der Fotorezeptoren bis zur Bruch'schen Membran (ÄSF-BM), zusammen vermessen (Abb.9 und 10).

Abb. 9: Beispiel für eine Vermessung einer Netzhaut im Stadium des akuten ZAV a) abgebildet ist eine Programmansicht des SD-OCT Spectralis Heidelberg Engineering Version 5.1 "Thickness-Profile". Hier ist beispielhaft die Netzhaut im Stadium des akuten ZAV eines rechten Auges dargestellt. Links oben findet sich ein Fundusbild mit dem dargestellten Schnitt durch die Netzhaut, rechts daneben ein posteriorer Volumenscan der Netzhaut. b) die Netzhautschichten sind teilweise nicht voneinander abgrenzbar, da die Schichten ineinander übergehen. Deshalb wurden bei den Messungen folgende Schichten zusammengefasst vermessen: RNFS (5), GZS+IPS (4), ÄPS+IKS (3), ÄKS+ISF (2), ÄSF-BM (1). Die Kalippereinstellung erfolgte (außer bei der globalen Netzhautdicke) manuell, wenn keine automatisierte Messung möglich war. (Quelle: SD-OCT-Datenbank der Augenklinik des Universitätsklinikums Düsseldorf, Beschriftung eingefügt)

Abb. 10: Beispiel für eine Vermessung einer Netzhaut im Endstadium des ZAV. a) abgebildet ist eine Programmansicht des SD-OCT Spectralis Heidelberg Engineering Version 5.1 "Thickness-Profile". Hier ist beispielhaft eine Netzhaut im Endstadium des ZAV eines rechten Auges dargestellt. Links oben findet sich ein Fundusbild mit dem dargestellten Schnitt durch die Netzhaut, rechts daneben ein posteriorer Volumenscan der Netzhaut. Hier ist beispielhaft die Dickenmessung der gesamten Netzhautdicke (global) eingestellt. In dem unteren Feld könnte man jetzt die globale Dicke in µm an den Messpunkten N, M, T1 und T2 ablesen. b) die Netzhautschichten sind teilweise nicht voneinander abgrenzbar, da die Schichten stark atrophiert sind. Möglich sind Messungen folgender Schichten: RNFS (5), GZS+IPS (4), ÄPS+IKS (3), ÄKS+ISF (2), ÄSF-BM (1). Des Weiteren wurde der Kalipper zur Vermessung der Schichten nicht automatisiert messbar waren. (Quelle: SD-OCT-Datenbank der Augenklinik des Universitätsklinikums Düsseldorf, Beschriftung eingefügt)

Analog wurden die Kontrollaugen (Partneraugen) vermessen.

Ein Ethikvotum liegt vor: Studiennummer: 4580R, Registrierungs-ID: 2014011666, April 2014.

2.4 Datenauswertung und Statistik

Die statistische Auswertung erfolgte mit Hilfe des Statistikprogramms IBM SPSS Statistics for Macintosh V 28.0 (IBM Corp. Released 2021. IBM SPSS Statistics for Macintosh Version 28.0. Armonk NY: IBM Corp.).

Der Vergleich der durchschnittlichen Schichtdicken nach akutem und finalem ZAV sowie dem Referenzauge erfolgte durch den parametrischen Test unabhängiger Stichproben nach ANOVA mit dem Post-Hoc-Test Holmes-Bonferroni.

Die Prüfung der Korrelation zwischen dem Visus und den verschiedenen Schichtdicken nach akutem sowie finalem ZAV wurde für nicht-parametrische Daten über die Berechnung des Korrelationskoeffizienten Spearman-Rho erhoben. Die Prüfung auf Signifikanz der Korrelation wurde zweiseitig mit dem Test von Spearman-Rho durchgeführt.

Die Analyse der Auswirkung eines Heparinbolus und einer Parazentese auf den Endvisus sowie auf die Netzhautschichtdicken erfolgte mittels des t-Tests.

Die p-Werte wurden, wenn erforderlich, Bonferroni-korrigiert (Prel 2010/5, Sachs 2018). Änderungen ab einem p-Wert von p<0,05 wurden als signifikant (*) und Änderungen ab einem p-Wert von p<0,001 als hochsignifikant (**) klassifiziert bzw. markiert.

3 Ergebnisse

3.1 Schichtdickenveränderungen

Es wurden die Schichtdickenänderungen der Netzhautschichten nach akutem ZAV sowie bei finalem ZAV untersucht. Bei den Untersuchungen wurden die Netzhautschichtdicken des jeweiligen gesunden Partnerauges als Referenz ebenfalls vermessen. Es wurden die Mittelwerte der Schichtdicken sowie deren jeweilige statistisch signifikanten Unterschiede zu den Schichtdicken des Referenzauges ermittelt.

3.1.1 Schichtdickenänderungen der gesamten Netzhaut (global)

Die Messungen der gesamten Netzhautdicke zeigten im Stadium des akuten ZAV eine deutliche Zunahme der Netzhautdicke im Vergleich zum Referenzauge an allen Messpunkten. Im Endstadium des ZAV zeigte sich eine deutliche Abnahme der Netzhautdicke im Vergleich zum Referenzauge an den Messpunkten T1, T2 und N. An dem Messpunkt M zeigte sich keine statistisch signifikante Veränderung (Tab.1, Abb.11).

Netzhautschicht und Messpunkt	Mittelwert Schichtdicke akuter ZAV und korr. p- Wert der Änderung	Mittelwert Schichtdicke finaler ZAV und korr. p- Wert der Änderung	Mittelwert Schichtdicke Referenzaugen
global T1	300,1 ± 48,2 μm p<0,001	192,6 ± 16,6 μm, p=0,002	233,8 ± 12,3 µm
global T2	391,0 ± 72,9 μm p<0,001	210,5 ± 19,9 μm, p<0,001	281,6 ± 17,6 µm
global M	344,3 ± 163,5 μm, p=0,001	220,2 ± 18,9 μm, p>0,999	228,5 ± 21,2 µm
global N	456,1 ± 90,1 μm p<0,001	223,9 ± 27,7 μm, p<0,001	309,6 ± 16,2 μm

Lila=signifikante Korrelation p<0,05, rot=hochsignifikante Korrelation p<0,001

Tabelle 1: Mittelwerte der Schichtdicke (in μ m) der gesamten Netzhaut (global) nach akutem ZAV, finalem ZAV und den Referenzaugen an den Messpunkten T1, T2, M und N, sowie die jeweiligen Bonferroni-korrigierten p-Werte der Änderungen nach akutem und finalem ZAV im Vergleich zu den Referenzaugen.

Statistisch signifikant gelten, hier und in folgenden Tabellen, Änderungen ab einem p-Wert von p<0,05 (lila markiert) und hochsignifikante Änderungen gelten ab einem p-Wert von p<0,001 (rot markiert).

3.1.2 Schichtdickenänderungen der retinalen Nervenfaserschicht (RNFS)

Die Messungen der RNFS zeigten im Stadium des akuten ZAV eine signifikante Zunahme der Schichtdicke im Vergleich zum Referenzauge am Messpunkt N. Im Stadium des finalen ZAV zeigte sich ebenfalls lediglich am Messpunkt N eine Abnahme der Schichtdicke im Vergleich zum Referenzauge. An den Messpunkten T1 und T2 zeigte sich weder im akuten noch im finalen Stadium eine statistisch signifikante Veränderung (Tab.2, Abb.12). An dem Messpunkt M wurden keine Messdaten erhoben, da dort keine retinalen Nervenfasern verlaufen (Abb.7b)).

Netzhautschicht und Messpunkt	Mittelwert Schichtdicke akuter ZAV und korr. p- Wert der Änderung	Mittelwert Schichtdicke finaler ZAV und korr. p- Wert der Änderung	Mittelwert Schichtdicke Referenzaugen
RNFS T1	25,3 ± 17,0 μm, p=0,206	9,4 ± 4,2 μm, p>0,999	17,2 ± 4,6 μm
RNFS T2	34,0 ± 23,7 μm, p=0,422	11,2 ± 6,6 μm, p=0,647	23,4 ± 7,9 μm
RNFS N	51,0 ± 22,6 μm, p=0,011	16,8 ± 7,3 μm, p=0,011	35,6 ± 11,7 μm

Tabelle 2: Mittelwerte der Schichtdicke (in \mum) der RNFS nach akutem ZAV, finalem ZAV und den Referenzaugen an den Messpunkten T1, T2 und N, sowie die jeweiligen Bonferronikorrigierten p-Werte der Änderungen nach akutem und finalem ZAV im Vergleich zu den Referenzaugen.

Abb. 12: Säulendiagramm der Schichtdicken (in μ m) der RNFS nach akutem ZAV (blau), bei finalem ZAV (rot) sowie des Referenzauges (grün) an den jeweils vier Punkten T1, T2, M und N. Signifikante Netzhautschichtdickenänderungen der akuten und finalen ZAV im Vergleich zu den Referenzaugen sind mit Sternchen gekennzeichnet, wobei Signifikanzen von p<0,05 mit * und hochsignifikante Unterschiede p<0,001 mit ** markiert sind.

3.1.3 Schichtdickenänderungen der Ganglienzellschicht und inneren plexiformen Schicht (GZS+IPS)

Die Messungen der GZS+IPS zeigten im Stadium des akuten ZAV eine Zunahme der Schichtdicke im Vergleich zum Referenzauge an allen Messpunkten T1, T2 und N. Im Endstadium des ZAV zeigte sich eine deutliche Abnahme der Schichtdicke im Vergleich zum Referenzauge an den Messpunkten T1, T2 und N (Tab.3, Abb.13). Am Messpunkt M wurden keine Messdaten erhoben da die GZS+IPS dort anatomisch nicht vorhanden war (Abb.7b)).

Netzhautschicht und Messpunkt	Mittelwert Schichtdicke akuter ZAV und korr. p- Wert der Änderung	Mittelwert Schichtdicke finaler ZAV und korr. p- Wert der Änderung	Mittelwert Schichtdicke Referenzaugen
GZS+IPS T1	68,3 ± 23,5 μm, p<0,001	19,2 ± 8,6 μm, p<0,001	47,8 ± 9,0 μm
GZS+IPS T2	98,5 ± 40,6 μm, p<0,001	21,5 ± 9,2 μm, p<0,001	66,4 ± 15,3 μm
GZS+IPS N	125,5 ± 56,0 μm, p<0,001	26,5 ± 12,5 μm, p=0,005	70,2 ± 11,4 µm

Lila=signifikante Korrelation p<0,05, rot=hochsignifikante Korrelation p<0,001

Tabelle 3: **Mittelwerte der Schichtdicke (in \mum) der GZS+IPS** nach akutem ZAV, finalem ZAV und den Referenzaugen an den Messpunkten T1, T2 und N, sowie die jeweiligen Bonferronikorrigierten p-Werte der Änderungen nach akutem und finalem ZAV im Vergleich zu den Referenzaugen.

Abb. 13: Säulendiagramm der Schichtdicken (in \mum) der GZS+IPS nach akutem ZAV (blau), nach finalem ZAV (rot) sowie des Referenzauges (grün) an den jeweils vier Punkten T1, T2, M und N. Signifikante Netzhautschichtdickenänderungen der akuten und finalen ZAV im Vergleich zu den Referenzaugen sind mit Sternchen gekennzeichnet.

3.1.4 Schichtdickenänderungen der äußeren plexiformen Schicht und der inneren Körnerschicht (ÄPS+IKS)

Die Messungen der ÄPS+IKS zeigten im Stadium des akuten ZAV eine deutliche Zunahme der Schichtdicke im Vergleich zum Referenzauge an allen Messpunkten. Im Endstadium des ZAV zeigte sich eine Abnahme der Schichtdicke im Vergleich zum Referenzauge an allen Messpunkten (Tab.4, Abb.14). Am Messpunkt M wurden keine Messdaten erhoben da die ÄPS+IKS anatomisch nicht vorhanden war (Abb.7b)).

Netzhautschicht und Messpunkt	Mittelwert Schichtdicke akuter ZAV und korr. p- Werte der Änderung	Mittelwert Schichtdicke finaler ZAV und korr. p- Werte der Änderung	Mittelwert Schichtdicke Referenzaugen
ÄPS+IKS T1	71,7 ± 19,7 μm, p<0,001	29,4 ± 12,0 μm, p=0,011	45,7 ± 7,0 μm
ÄPS+IKS T2	98,4 ± 38,9 μm, p<0,001	31,9 ± 12,0 μm, p=0,017	60,4 ± 9,2 μm
ÄPS+IKS N	108,1 ± 38,9 μm, p<0,001	30,6 ± 13,8 μm, p=0,003	63,3 ± 11,5 μm

Tabelle 4: Mittelwerte der Schichtdicke (in \mum) der ÄPS+IKS nach akutem ZAV, finalem ZAV und den Referenzaugen, sowie die jeweiligen Bonferroni-korrigierten p-Werte der Änderungen nach akutem und finalem ZAV im Vergleich zu den Referenzaugen.

Abb. 14: Säulendiagramm der Schichtdicken (in μ m) der ÄPS+IKS nach akutem ZAV (blau), nach finalem ZAV (rot) sowie des Referenzauges (grün) an den jeweils vier Punkten T1, T2, M und N. Signifikante Netzhautschichtdickenänderungen der akuten und finalen ZAV im Vergleich zu den Referenzaugen sind mit Sternchen gekennzeichnet.

3.1.5 Schichtdickenänderungen der äußeren Körnerschicht und der inneren Segmente der Fotorezeptoren (ÄKS+ISF)

Die Messungen der ÄKS+ISF zeigten im Stadium des akuten ZAV eine Zunahme der Schichtdicke im Vergleich zum Referenzauge an allen Messpunkten. Im Endstadium des ZAV zeigte sich an allen Messpunkten keine statistisch signifikante Änderung der Schichtdicken im Vergleich zum Referenzauge (Tab.5, Abb.15).

Netzhautschicht und Messpunkt	Mittelwert Schichtdicke akuter ZAV und korr. p- Werte der Änderung	Mittelwert Schichtdicke finaler ZAV und korr. p- Werte der Änderung	Mittelwert Schichtdicke Referenzaugen
ÄSK+ISF T1	68,7 ± 16,5 μm, p=0,016	65,4 ± 11,9 μm, p>0,999	56,5 ± 10,0 μm
ÄSK+ISF T2	92,1 ± 19,8 μm, p<0,001	77,2 ± 14,5 μm, p=0,522	64,9 ± 10,3 μm
ÄSK+ISF M	188,3 ± 86,1 μm, p=0,001	115,1 ± 17,4 μm, p>0,999	127,5 ± 15,3 μm
ÄSK+ISF N	102,9 ± 21,1 μm, p<0,001	79,1 ± 15,7 μm, p>0,999	74,3 ± 13,7 μm

Lila=signifikante Korrelation p<0,05, rot=hochsignifikante Korrelation p<0,001

Tabelle 5: Mittelwerte der Schichtdicke (in \mum) der ÄKS+ISF nach akutem ZAV, finalem ZAV und den Referenzaugen an den Messpunkten T1, T2, M und N, sowie die jeweiligen Bonferroni-korrigierten p-Werte der Änderungen nach akutem und finalem ZAV im Vergleich zu den Referenzaugen.

Abb. 15: Säulendiagramm der Schichtdicken (in μ m) der ÄKS+ISF nach akutem ZAV (blau), nach finalem ZAV (rot) sowie des Referenzauges (grün) an den jeweils vier Punkten T1, T2, M und N. Signifikante Netzhautschichtdickenänderungen der akuten und finalen ZAV im Vergleich zu den Referenzaugen sind mit Sternchen gekennzeichnet.

3.1.6 Schichtdickenänderungen der äußeren Segmente der Fotorezeptoren bis zur Bruch`schen Membran (ÄSF-BM)

Die Messungen der ÄSF-BM zeigten weder im Stadium des akuten noch des finalen ZAV eine statistisch signifikante Veränderung der Schichtdicke im Vergleich zum Referenzauge (Tab.6, Abb.16).

Netzhautschicht und Messpunkt	Mittelwert Schichtdicke akuter ZAV und korr. p- Wert der Änderung	Mittelwert Schichtdicke finaler ZAV und korr. p- Wert der Änderung	Mittelwert Schichtdicke Referenzaugen
ÄSF-BM T1	66,1 ± 5,1 μm, p>0,999	68,5 ± 5,0 μm, p>0,999	66,5 ± 4,7 μm
ÄSF-BM T2	68,0 ± 5,50 μm p>0,999	69,4 ± 4,3 μm, p>0,999	66,5 ± 4,7 μm
ÄSF-BM M	83,5 ± 14,8 μm, p>0,999	73,4 ± 5,7 μm, p>0,999	78,2 ± 7,5 μm
ÄSF-BM N	68,6 ± 7,1 μm, p>0,999	70,9 ± 4,8 μm, p=0,540	66,1 ± 5,5 μm

Tabelle 6: Mittelwerte der Schichtdicke (in \mum) der ÄSF-BM nach akutem ZAV, finalem ZAV und den Referenzaugen an den Messpunkten T1, T2, M und N, sowie die jeweiligen Bonferronikorrigierten p-Werte der Änderungen nach akutem und finalem ZAV im Vergleich zu den Referenzaugen.

Abb. 16: Säulendiagramm der Schichtdicken (in μ **m) der ÄSF-BM** nach akutem ZAV (blau), bei finalem ZAV (rot) sowie des Referenzauges (grün) an den jeweils vier Punkten T1, T2, M und N.

3.2 Visus und Korrelation des Visus mit den Schichtdicken

Der durchschnittliche Visus (DIN) aller Referenzaugen betrug 0,78 \pm 0,19 (entspricht 0,11 \pm 0,11 logMar), der durchschnittliche Visus (DIN) aller Augen nach akutem ZAV war 0,01 \pm 0,009 (entspricht 1,98 \pm 0,15 logMar) und der Visus (DIN) der Augen mit finalem ZAV betrug 0,015 \pm 0,03 (entspricht 1,81 \pm 0,33 logMar).

Es zeigte sich eine statistisch signifikante Korrelation zwischen Schichtdicke und dem Visus im Stadium des akuten ZAV an dem Messpunkt ÄKS+ISF T1 (Korrelationskoeffizient -0,44, p=0,011), sowie im Stadium des finalen ZAV an dem Messpunkt M der Gesamtnetzhautdicke (Korrelationskoeffizient -0,61, p=0,009) und an dem Messpunkt ÄKS+ISF M (Korrelationskoeffizient -0,53, p=0,029). Wegen der Berechnung mit logMar-Werten war die Korrelation negativ. An allen anderen Messpunkten ließen sich weder im akuten noch im Endstadium signifikante Korrelationen zum Visus nachweisen (Tab.7).

	Akuter ZAV		Finaler ZAV	
Netzhautschicht und Messpunkt	Korrelationskoeffizient Spearman Rho	p-Wert	Korrelationskoeffizient Spearman Rho	p-Wert
Global T1	-0,07	0,710	-0,22	0,405
Global T2	-0,06	0,729	0,01	0,958
Global M	-0,32	0,074	-0,61	0,009
Global N	-0,12	0,522	-0,02	0,929
RNFS T1	0,16	0,372	0,11	0,663
RNFS T2	-0,02	0,903	0,05	0,852
RNFS N	0,14	0,421	0,44	0,074
GZS+IPS T1	0,10	0,577	-0,33	0,190
GZS+IPS T2	-0,01	0,959	0,45	0,073
GZS+IPS N	-0,21	0,243	0,19	0,464
ÄPS+IKS T1	0,00	0,985	0,08	0,772
ÄPS+IKS T2	0,05	0,793	-0,09	0,731

ÄPS+IKS N	-0,06	0,723	-0,31	0,220
ÄKS+ISF T1	-0,44	0,011	-0,08	0,760
ÄKS+ISF T2	-0,28	0,117	-0,09	0,735
ÄKS+ISF M	-0,25	0,165	-0,53	0,029
ÄKS+ISF N	-0,32	0,463	-0,27	0,286
ÄSF-BM T1	-0,03	0,889	-0,09	0,719
ÄSF-BM T2	0,09	0,600	-0,26	0,316
ÄSF-BM M	0,01	0,962	0,45	0,069
ÄSF-BM N	-0,08	0,661	0,18	0,489

Tabelle 7: Korrelation zwischen dem Visus und den Schichtdicken (KorrelationskoeffizientSpearmans Rho) an den Messpunkten T1, T2, M und N, sowie die jeweiligen Signifikanzen p

3.3 Einfluss der Therapieoptionen auf die Schichtdicken und den Visus

3.3.1 Einfluss des Heparinbolus

Es konnte kein statistisch signifikanter Einfluss des Heparin-Bolus auf die Schichtdicken im akuten Stadium des ZAV nachgewiesen werden. Im Endstadium des ZAV zeigte sich ein Schichtdickenunterschied an dem Messpunkt ÄSF-BM N, bei ansonsten keinem Unterschied an allen anderen Messpunkten (Tab.8, Tab.10). Es zeigte sich desweiteren auch kein Einfluss des Heparinbolus auf den Visus (Tab.9, Tab.11).

Netzhautschicht und Messpunkt nach akutem ZAV	Heparinbolus	Ν	Mittelwert mit Standardabweichung	Korr. p- Wert	
Global T1	nein	18	307,8±55,4 μm	.0.000	
	ја	15	290,8±37,6 μm	~0,999	
Global T2	nein	18	400,9±82,4 μm	<0.000	
	ја	15	379,1±60,1 μm	- <0,999	
Global M	nein	18	356,5±151,9 μm	<0.000	
	ја	15	329,6±180,8 μm	- <0,999	

nein 18 468,7±86,3 µm	-0.000
Global N ja 15 441,0±95,3 μm	— <0,999
nein 18 27,8±19,3 µm	<0.000
ja 15 22,3±13,8 µm	~0,999
	<0.000
ja 15 26,1±18,4 µm	~0,999
nein 18 55,8±19,0 µm	<0.000
ja 15 45,3±25,8 µm	~0,999
C75+JPS T1 nein 18 73,7±26,5 μm	<0.000
ja 15 61,7±18,0 µm	-0,999
C75+JPS T2 nein 18 98,7±46,5 μm	<0.000
ja 15 98,3±33,8 µm	-0,000
CZS+IPS N nein 18 127,6±59,9 μm	<0.000
ja 15 123,0±53,0 µm	-0,999
ÄPS+IKS T1 nein 18 73,1±20,8 μm	<0.000
ja 15 70,0±18,9 µm	<0,333
ÄPS+IKS T2 nein 18 104,2±45,9 μm	<0 000
ja 15 91,4±28,3 µm	-0,000
ÄΡS+IKS N nein 18 109,3±40,9 μm	<0.000
ja 15 106,5±37,9 µm	-0,999
ÄKS+ISE T1 nein 18 66,9±18,0 μm	<0 999
ja 15 70,8±14,8 µm	-0,000
ÄKS+ISET2 nein 18 90,8±18,5 μm	<0 999
ja 15 93,7±21,9 µm	-0,999
ÄKS+ISE M nein 18 201,0±87,6 μm	<0 000
ja 15 173,0±84,7 µm	-0,000
ÄKS+ISE N nein 18 108,2±21,6 μm	<0 999
ja 15 96,5±19,4 µm	-0,000
ÄSE-BM T1 nein 18 66,2±5,7 μm	<0 999
ja 15 65,9±4,45 µm	-0,000
ÄSE-BM T2 nein 18 66,7±5,1 μm	<0 999
ja 15 69,5±5,8 µm	-0,000
ÄSE-BM м nein 18 83,8±15,6 µm	<0.000
ja 15 83,1±14,4 µm	~0,999
ÄSE-RM N nein 18 67,8±6,8 μm	
	<0 QQQ

Tabelle 8: Schichtdickenmittelwerte (in μ m) der akuten ZAV mit und ohne Heparingabeund die Bonferroni-korrigierten p-Werte der Unterschiede an den einzelnen Messpunkten.

Heparinbolus	Ν	Visus- Mittelwert mit Standardabweichung	p-Wert
nein	18	2,02 ± 0,05 logMar	0 100
ja	15	1,93 ± 0,21 logMar	0,109

Tabelle 9: Visusmittelwerte (in logMar) der akuten ZAV mit und ohne Heparingabe und p-Wert des Unterschieds

Netzhautschicht und Messpunkt nach finalem ZAV	Heparinbolus	Ν	Mittelwert mit Standardabweichung in <i>µ</i> m	Korr. p- Wert
	nein	15	193,8±17,3 μm	<0.000
GIODALLI	ја	2	183,5±5 μm	- <0,999
	nein	15	210,9±21,2 μm	<0.000
	ја	2	207±5,7 μm	- <0,999
Global M	nein	15	219,1±19,8 μm	<0.000
	ја	2	228±8,5 μm	- <0,999
	nein	15	224,5±29,1 μm	<0.000
GIODAI N	ја	2	219±19,8 μm	- <0,999
RNFS T1	nein	15	8,9±3,8 μm	<0.000
	ја	2	12,5±7,8 μm	- <0,999
RNFS T2	nein	15	10,2±5,8 μm	<0.000
	ја	2	18,5±10,6 μm	- <0,999
RNFS N	nein	15	15,5±6,8 μm	<0.000
	ја	2	26±4,2 μm	- <0,999
	nein	15	19,1±9,2 μm	<0.000
623+1P3 11	ја	2	20,5±3,5 μm	- <0,999
	nein	15	21,5±9,6 μm	<0.000
	ја	2	21±8,5 μm	- <0,999
	nein	15	27,4±13,1 µm	_ <0 000
GZS+IPS N	ја	2	19,5±3,5 μm	- <0,999
	nein	15	29,7±12,4 µm	<0.000
APS+IKS 11	ја	2	27±12,7 μm	- <0,999
	nein	15	33,3±11,9 μm	<0.000
AFSTINS 12	ја	2	22±9,9 µm	- <0,999
	nein	15	31,9±13,2 μm	<0.000
AFS+INS IN	ја	2	21,5±20,5 μm	- <0,999
ÄKS+ISF T1	nein	15	67±11,7 μm	<0,999

	ja	2	53,5±6,4 μm	
	nein	15	77,3±15,4 μm	<0.000
AN3+13F 12	ja	2	76±2,8 μm	<0,999
	nein	15	114,5±18,3 μm	<0.000
ANSTISF M	ja	2	119,5±10,6 μm	<0,999
ÄKS+ISF N	nein	15	78,1±16,4 μm	<0.000
	ja	2	86±7,1 μm	~0,999
	nein	15	68,3±5,4 μm	<0.000
ASL-DIM 11	ja	2	70±0 μm	~0,999
	nein	15	69,4±3,6 μm	<0.000
AST-DIVI 12	ja	2	69,5±10,6 μm	~0,999
	nein	15	73±5,9 μm	<0.000
	ja	2	76±5,7 μm	~0,999
ÄSF-BM N	nein	15	71,6±4,8 μm	0.000
	ja	2	66±0 μm	- 0,009

Tabelle 10: Schichtdickenmittelwerte (in μ m) der finalen ZAV mit und ohne Heparingabe und Bonferroni-korrigierte p-Werte der Unterschiede an den einzelnen Messpunkten.

Heparinbolus	Ν	Visus- Mittelwert mit Standardabweichung	p-Wert
nein	15	1,83 ± 0,32 logMar	0 475
ja	2	1,65 ± 0,49 logMar	- 0,475

Tabelle 11: Visusmittelwerte (in logMar) der finalen ZAV mit und ohne Heparingabe undp-Wert des Unterschieds

3.3.2 Einfluss der plötzlichen Augendrucksenkung per Parazentese

Es konnte kein Einfluss einer Kammerwasserablassung über eine Parazentese auf die Schichtdicken im Stadium des akuten oder finalen ZAV nachgewiesen werden (Tab.12, Tab.14). Ebenso zeigte sich kein nachweisbarer Einfluss der Parazentese auf den Visus (Tab.13, Tab.15).

Netzhautschicht und Messpunkt nach akutem ZAV	Parazentese	N	Mittelwert mit Standardabweichung	Korr. p- Wert
Global T1	nein	30	301,0±48,9µm	- <0.000
	ja	3	291,0±48,8 µm	<0,999
Global T2	nein	30	390,20±72,8µm	0 000
	ja	3	399,0±89,2µm	- <0,999
	nein	30	335,5±159,1µm	0.000
	ja	3	432,0±219,6µm	- <0,999
Global N	nein	30	449,8±87,3µm	0.000
	ja	3	519,0±113,5µm	~0,999
	nein	30	24,7±16,3µm	<0.000
	ja	3	31,3±26,1µm	- <0,999
	nein	30	34,3±24,5µm	<0.000
RNF5 12	ja	3	31,0±16,5µm	5μm<0,999
	nein	30	49,9±22,7µm	<0.000
KNF2 N	ja	3	62,3±22,0µm	- <0,999
070,100 74	nein	30	68,4±24,5µm	- <0,999
GZSHIPS 11	ja	3	67,3±11,1µm	
GZS+IPS T2	nein	30	96,7±40,6µm	.0.000
	ja	3	116,7±43,7µm	- <0,999
GZS+IPS N	nein	30	118,7±47,9µm	0.540
	ja	3	193,7±96,4µm	- 0,516
	nein	30	73,3±19,5µm	.0.000
APS+1K5 11	ja	3	56,0±17,1µm	- <0,999
	nein	30	98,3±39,5µm	.0.000
APS+IKS 12	ja	3	98,7±38,7µm	- <0,999
	nein	30	109,8±40,2µm	
APS+IKS N	ja	3	91,0±18,4µm	- <0,999
	nein	30	68,6±16,7µm	.0.000
AKSHISE 11	ja	3	69,0±16,8µm	- <0,999
	nein	30	93,3±20,3µm	
AKS+ISF T2	ja	3	80,3±10,1µm	- <0,999
	nein	30	186,6±89,3µm	
AKS+ISF M	ja	3	205,0±50,4µm	- <0,999
	nein	30	102,8±20,9µm	
ÄKS+ISF N -	ja	3	103,7±28,4µm	- <0,999
	nein	30	66,0±5,0μm	
ASF-BM T1	ja	3	67,3±6,8µm	- <0,999
	nein	30	67,5±5,4µm	
ASF-BM T2	ja	3	72,3±5,7µm	- <0,999
	,			

ÄSF-BM M	nein	30	82,9±15,5µm	<0.000
	ja	3	89,0±1,7µm	- <0,999
	nein	30	68,7±7,2µm	<0.000
ASF-DINI N	ja	3	68,3±7,6µm	0,999

Tabelle 12: Schichtdickenmittelwerte (in μ m) der akuten ZAV mit und ohne Parazenteseund Bonferroni-korrigierte p-Werte der Unterschiede an den einzelnen Messpunkten.

Parazentese	Ν	Visus- Mittelwert mit Standardabweichung	p-Wert
nein	30	1,97 ± 0,16 logMar	0 5 2 7
ja	3	2,03 ± 0,06 logMar	

Tabelle 13: Visusmittelwerte (in logMar) der akuten ZAV mit und ohne Parazentese und p-Wert des Unterschieds

Netzhautschicht und Messpunkt nach akutem ZAV	Parazentese	Ν	Mittelwert mit Standardabweichung	Korr. p- Wert
Clobal T1	nein	16	193,4±16,7µm	<0.000
GIODALTI	ja	1	179 µm	- <0,999
Global T2	nein	16	209,6±20,3 μm	- <0.000
	ja	1	224 µm	<0,999
Global M	nein	16	220,7±19,4 μm	- <0.000
Giobal M	ja	1	212 µm	~0,999
Global N	nein	16	222±27,5 μm	- <0,999
	ja	1	254 µm	
DNEC T1	nein	16	9,3±4,3 μm	- <0,999
	ja	1	11 µm	
DNES TO	nein	16	10,8±6,7 μm	- <0.000
	ja	1	17 µm	~0,999
	nein	16	17,1±7,5 μm	- <0.000
	ja	1	12 µm	~0,999
GZS+IPS T1	nein	16	19,5±8,8 µm	- <0.000
	ja	1	15 µm	- <0,999
	nein	16	21,3±9,4 µm	<0.000
023tir3 12	ja	1	25 µm	~0,999
GZS+IPS N	nein	16	25,4±12,1 μm	<0,999

	ja	1	44 µm	
	nein	16	29,8±12,3 µm	<0.000
AP3+IN3	ја	1	23 µm	~0,999
ÄPS+IKS T2	nein	16	31,9±12,4 μm	<0.000
	ја	1	32 µm	~0,999
	nein	16	30,9±14,2 μm	<0.000
AFSTIKS N	ja	1	26 µm	- <0,999
	nein	16	65,4±12,3 μm	
	ја	1	66 µm	<0,999
ÄKS+ISF T2	nein	16	76,8±14,8 μm	<0.000
	ја	1	84 µm	-0,333
	nein	16	115,13±18 μm	
	ја	1	115 µm	
	nein	16	77,4±14,5 μm	<0.000
	ja	1	106 µm	~0,999
	nein	16	68,8±5,1 μm	<0.000
	ја	1	64 µm	- <0,999
ÄSE-BM T2	nein	16	69,6±4,3 µm	<0 000
A3F-DW172	ja	1	66 µm	~0,999
ÄSE-RM M	nein	16	73,3±5,9 μm	<0.000
	ja	1	74 µm	~0,999
	nein	16	71,3±4,8 µm	
ASF-BM N	ja	1	66 µm	~0,999

Tabelle 14: Schichtdickenmittelwerte (in μ m) der finalen ZAV mit und ohne Parazenteseund Bonferroni-korrigierte p-Werte der Unterschiede an den einzelnen Messpunkten.

Parazentese	Ν	Visus- Mittelwert mit Standardabweichung	p-Wert
nein	16	1,8 ± 0,33 logMar	0 571
ja	1	2,0 logMar	- 0,571

Tabelle 15: Visusmittelwerte (in logMar) der finalen ZAV mit und ohne Parazentese und p-Wert des Unterschieds der Mittelwerte

4 Diskussion

4.1 Morphologie

4.1.1 Morphologie der Gesamtnetzhautdicke

In dieser Arbeit wurde gezeigt, dass die Gesamtnetzhautdicke (global) im Stadium des akuten ZAV topografisch an allen Messpunkten im Vergleich zu den Referenzaugen zunimmt (Tab.1, Abb.11). Lediglich am fovealen Messpunkt M zeigte sich eine etwas geringere Zunahme, was sich in klinisch funduskopischen Charakteristika eines ZAV widerspiegelt: Die Fovea zeigt sich bei einem akuten ZAV charakteristisch als "kirschroter Fleck", was damit zu erklären ist, dass kein bzw. weniger Ödem entsteht als an der umliegenden Netzhaut, weil weniger Gewebe vorhanden ist was anschwellen kann (Joussen 2012).

Auch andere ZAV-SD-OCT-Studien kamen bezüglich der Gesamtschichtdicke zu einem ähnlichen Ergebnis (Kim, Kim et al. 2018, Matthe, Eulitz et al. 2019). Dagegen war die Dickenänderung im Bereich der Foveola nicht einheitlich: Matthe et al. kamen in ihrer SD-OCT-Studie ebenfalls zu dem Ergebnis, dass sich die gesamte Netzhaut nach okulärer Ischämie verdickte, jedoch war in der zentralen Fovea, welche dem Messpunkt M meiner Studie entspricht, die Dickenzunahme geringer als in der umliegenden Netzhaut. Lediglich bei kompletten ZAV, die mit einer dauerhaften Ischämie einhergingen, zeigte sich auch eine deutliche Dickenzunahme in der zentralen Fovea (Matthe, Eulitz et al. 2019). Möglicherweise spiegelt die Dickenänderung der Foveola-Gesamtdicke die Verschlussdauer wider.

In der Studie von Kim et al. zeigte sich die Gesamtschichtdicke parafoveolär ebenfalls im akuten Stadium des ZAV verdickt, während sie sich im Bereich der zentralen Fovea nicht verdickt zeigte (Kim, Kim et al. 2018).

Im finalen Stadium des ZAV zeigte sich eine deutliche Abnahme der Gesamtnetzhautdicke (global) im Vergleich zu den Referenzaugen an den Messpunkten T1, T2 und N (Tab.1, Abb.11). An dem Messpunkt M zeigte sich keine Änderung zu den Referenzaugen, was sich mit der klinischen SD-OCT-Studie von Kim et al. deckt: Auch hier wurde die Netzhaut nach frühestens 3 Monaten nach ZAV untersucht und eine deutliche Abnahme der Dicke außer im Bereich der Fovea gemessen (Kim, Kim et al. 2018).

Die geringe Zunahme im akuten Stadium und eine geringe Abnahme im fortgeschrittenen Stadium am Messpunkt M ist damit zu erklären, dass an diesem

Messpunkt die innersten Schichten RNFS, GZS+IPS sowie ÄPS+IKS, welche am meisten von einem Ödem im akuten Stadium und einer Atrophie im Endstadium betroffen sind (s.u.) (Tab. 2, Abb. 12, Tab.3, Abb.13, Tab.4, Abb.14), seitlich verlagert sind (Benninghoff A.; Drenckhahn 2008, Kanski J. 2012).

4.1.2 Morphologie der inneren Schichten RNFS, GZS+IPS und ÄPS+IKS

Die RNFS stellt sich nur am nasalen Messpunkt im akuten Stadium verdickt und im fortgeschrittenen Stadium verdünnt dar, nicht jedoch an den Messpunkten T1 und T2 (Tab. 2, Abb. 12). Dies ist damit zu erklären, dass diese Schicht physiologisch nasal dicker als an den temporalen Messpunkten ist. Die Auswirkungen von Hypoxie und Atrophie sind möglicherweise deshalb sowohl im akuten Stadium als Schwellung wie auch im fortgeschrittenen Stadium als Atrophie besser ablesbar.

Kim et al. zeigten in ihren Studien ebenfalls eine deutliche Dickenzunahme im akuten Stadium bzw. eine Dickenabnahme im finalen Stadium des ZAV der inneren Schichten RNFS nasal perimakulär und GZS+IPS insgesamt im Vergleich zu den gesunden Partneraugen (Kim, Kim et al. 2018, Kim, Kim et al. 2018).

Die anderen inneren Schichten GZS+IPS und ÄPS+IKS zeigten an allen Messpunkten eine deutliche Verdickung im Vergleich zu den Referenzaugen im akuten Stadium und eine Verdünnung im Endstadium (Tab.3, Abb.13, Tab.4, Abb.14).

Die Verdickung im akuten Stadium und die Verdünnung im Endstadium ist zu erwarten, da die innere Netzhaut bis zur ÄPS durch die Äste und Kapillargefäße der ZA versorgt wird. Die äußere Retina, die über Diffusion von der Aderhaut versorgt wird, bleibt entsprechend relativ intakt (Spencer W. 2011, Joussen 2012).

Auch Leung et al. beschreiben eine Schichtdickenzunahme der RNFS in der OCT nach akutem ZAV, sowie eine Abnahme im finalen Stadium des ZAV. Es wurde, ebenfalls wie bei Kim et al. beschrieben, dass der Schaden der inneren Netzhaut in direktem Zusammenhang mit der Dauer der Ischämie stand. Je länger die Ischämie andauerte, desto größer war der retinale Schaden (Leung, Tham et al. 2007, Kim, Kim et al. 2018).

Dies wurde auch in verschiedenen Tiermodellen gezeigt (Hayreh, Zimmerman et al. 2004, Tobalem, Schutz et al. 2018). Hayreh et al. zeigten, dass die Netzhaut von Rhesusaffen mehr Schaden nahm je länger die Ischämie bestand. Nach 4 Stunden bestand ein irreversibler kompletter Untergang der retinalen Zellen (Hayreh, Zimmerman et al. 2004, Hayreh 2018). Tobalem et al. stellten in ihrem Review von

Tierexperimenten vor, dass eine effektive Reperfusion nach spätestens 12-15 Minuten größeren Schaden der Netzhaut verhinderte und eine gute Visusprognose zuließ, da in dieser Zeit die GZS noch intakt blieb (Tobalem, Schutz et al. 2018).

Goldenberg et al. beschreiben, dass es histopathologisch im Mausmodel nach ZAV zunächst zu einer Koagulationsnekrose der inneren Netzhaut mit einem akuten Hypoxie-bedingten intrazellulären Ödem kommt. Nach der Einwanderung von Phagozyten und Mastzellen werden die inneren Netzhautschichten (RNFS, GZS, IPS) meist fibrotisch umgebaut, so dass es nach ungefähr 3 Monaten zu einer Atrophiebedingten Verdünnung der inneren Netzhaut kommt (Goldenberg-Cohen, Dadon et al. 2008, Spencer W. 2011).

4.1.3 Morphologie der äußeren Schichten ÄKS+ISF und ÄSF-BM

Die äußeren Schichten ÄKS+ISF zeigten an allen Messpunkten T2, T1, M und N überraschenderweise ebenfalls eine Zunahme im akuten Stadium nach ZAV (Tab.5, Abb.15). Die Zunahme zeigt die Auswirkungen der Hypoxie auch auf diese Schichten. Diese Schichten werden demnach ebenfalls noch aus der ZA, neben der Diffusion der Aderhaut, mitversorgt (Kolb 1995). Im finalen Stadium zeigte sich diese Schicht nicht verändert.

Die äußerste Schicht ÄSF-BM zeigte weder im akuten noch im finalen Stadium des ZAV Veränderung (Tab.6, Abb.16), was sich ebenfalls mit den Ergebnissen verschiedener OCT-Studien deckt (s.o.) (Ritter, Sacu et al. 2012, Kim, Kim et al. 2018, Matthe, Eulitz et al. 2019).

4.1.4 Innere versus äußere Netzhautschichten - Vergleich mit der Literatur

Die Ergebnisse spiegeln sich insgesamt auch in einer Studie von Ritter et al. wider. In dieser Studie wurden die einzelnen Schichten nach akutem AAV und finalem AAV nach 3 Monaten untersucht. Die Schichtdicken wurden mit den Schichtdicken gesunder Netzhautareale verglichen. Ritter et al. kamen ebenfalls zu dem Ergebnis, dass sich die inneren Schichten im Stadium des akuten ZAV verdickten, während sie sich im Endstadium im Vergleich zu den Schichtdicken der gesunden Netzhautareale verdünnten. Die äußeren Schichten zeigten weder im akuten, noch im finalen Stadium eine signifikante Veränderung nach ZAV im Vergleich zu den Schichten zeigten weder im akuten, noch im finalen Stadium eine signifikante Veränderung nach ZAV im Vergleich zu den Schichten zeigten zu den Schichten zeigten zu den Schichten zu den Schichten zeigten zu den Schichten gesunder Netzhautareale (Ritter, Sacu et al. 2012).

Matthe et al. zeigten ebenfalls, dass sich die Schichtdicken der Retina nach ZAV und AAV in den betroffenen Regionen in der SD-OCT identisch im akuten Stadium verdickten bzw. im finalen Stadium verdünnten, während die äußere Netzhaut relativ intakt blieb (Matthe, Eulitz et al. 2019). Begründet wurde dies in der Studie damit, dass es zwei unterschiedliche kapilläre Versorgungsnetze in der Netzhaut gab: Das oberflächige kapilläre Netz zwischen RNFS und GZS und das tiefe kapilläre Netz zwischen ÄPS und IKS. Es wurde beschrieben, dass das oberflächige kapilläre Netz empfindlicher gegenüber Verschlüssen reagierte als das tiefe Netz, so dass, je nach Dauer der Ischämie, zuerst die inneren Schichten zu Schaden kamen und anschließend erst die äußeren. Diese These wurde jedoch in der gleichen Studie in Frage gestellt durch die geringe Fallzahl der untersuchten Patienten in dieser Studie (17 Patienten) (Matthe, Eulitz et al. 2019).

Zusammenfassend lässt sich anhand meiner Daten und der verfügbaren Literatur belegen, dass sich nach akutem ZAV die inneren Schichten ödematös verdicken und sich im finalen Stadium Atrophie-bedingt verdünnen, während die äußeren Schichten der Netzhaut, welche von der Aderhaut durch Diffusion mitversorgt werden, intakt bleiben (Spencer W. 2011, Joussen 2012, Kim, Kim et al. 2018).

4.2 Visuskorrelation

In meiner Arbeit konnte eine Korrelation zwischen der Gesamtschichtdicke im Bereich der Makula im Endstadium des ZAV und dem Visus nachgewiesen werden (Tab.7): Je dicker die Gesamtschichtdicke im finalen Stadium des ZAV war desto besser war der Visus. Zum jetzigen Zeitpunkt wurde in keiner anderen Studie der Zusammenhang der Netzhautdicke im finalen Stadium und dem Visus bei ZAV untersucht. Cho et al. untersuchten die foveale Gesamtnetzhautdicke von finalen AAV (3 Monate nach Erstsymptomatik). In dieser Studie kamen Cho et al. ebenfalls zu dem gleichen Ergebnis, dass die foveale Netzhautdicke mit dem Visus korrelierte. Je dicker die foveale Netzhautdicke war, desto besser war der bestkorrigierte Visus (Cho, Kim et al. 2010).

Ein Zusammenhang zwischen der Gesamtschichtdicke am Messpunkt M und dem Visus im akuten Stadium des ZAV konnte nicht nachgewiesen werden (Tab.7), was sich mit der Studie von Kim et al. deckt (Kim, Kim et al. 2018).

Im Gegensatz dazu fanden Kim et al. eine Korrelation der Gesamtschichtdicke des akuten ZAV mit dem Visus und zeigten, dass die parafoveale Gesamtschichtdicke

nach akutem ZAV mit dem End-Visus korrelierte. Diese Messpunkte untersuchte ich allerdings nicht. Vergleichbar wiesen Yang et al. in ihrer ZAV-SD-OCT-Studie nach, dass im Stadium des akuten ZAV die "zentrale makuläre Netzhautdicke", was einer Fläche um die Fovea herum entspricht, invers mit dem Visus korreliert: Je dicker sich die gesamte Netzhaut in der SD-OCT präsentierte desto geringer war der Visus (Yang, Liu et al. 2019).

Chen et al. beschrieben ebenfalls eine Korrelation der gesamten Netzhautdicke perifoveal zu dem Visus. Noch deutlicher war jedoch der Zusammenhang des Visus mit den morphologischen Veränderungen in der SD-OCT. In dieser Studie zeigte die Reflektivität der Fotorezeptoren und des retinalen Pigmentepithels in der SD-OCT einen signifikanten Zusammenhang mit dem Visus. Je ausgeprägter die Hyperreflektivität dieser Schichten war, desto schlechter war der Visus. Die Reflektivität wurde hier allerdings subjektiv bestimmt: Je dunkler sich die Schichten in den OCT-Scan darstellten desto reflektiver wurden sie eingestuft (Chen, Xia et al. 2016).

In meiner Studie zeigte sich des Weiteren an dem Messpunkt ÄKS+ISF T1 eine Korrelation der Schichtdicke zu dem Visus im Stadium des akuten ZAV, sowie an dem Messpunkt ÄKS+ISF M im Endstadium (Tab.7). Beim akuten ZAV mit einem negativen Korrelationskoeffizienten (ÄKS+ISF T1: -0,44) gilt je dicker die Schicht desto besser der Visus. An dem Messpunkt ÄKS+ISF M im Endstadium zeigte sich ebenfalls ein negativer Korrelationskoeffizient (ÄKS+ISF M: -0,53). Diesen Messpunkten ist gemein, dass sie weder in der Akutphase noch in der fortgeschrittenen Phase des ZAV eine statistisch signifikante Dickenänderung zeigten. Die Dicke der Fotorezeptorschicht stellt daher möglicherweise ein gewisses Maß an Intaktheit der Gesamtnetzhaut dar. Ich fand keine weitere Studie, die diese Schichten auf eine Korrelation zum Visus untersuchte. Diese beiden Schichten der äußeren Netzhaut zeigen sich nur bei ausgeprägten kompletten, d.h. persistierenden ZAV betroffen und verändert (Ahn, Woo et al. 2015, Chen, Xia et al. 2016, Furashova and Matthe 2017, Kim, Park et al. 2019). Bei diesen Patienten ist der Visusverlauf infaust. Bei Patienten mit inkompletten und/oder schnell reperfundierten ZAV und etwas günstigerem Visus zeigen sich auch die äußersten Schichten nicht verändert (Chen, Xia et al. 2016, Kim, Kim et al. 2018). Die Messungen im finalen Stadium sind mit den Ergebnissen in der Literatur konsistent (Chen, Chen et al. 2015, Chen, Xia et al. 2016, Kim, Kim et al. 2018, Kim, Kim et al. 2018): Je dicker die Schicht, desto weniger ist sie atrophiert, desto besser ist der Visus. Dies passt auch zu den Ergebnissen der Studie von Chen et al., da in dieser Studie eine Hyperreflektivität der äußeren Schichten mit dem Visus positiv korrelierte.

Erst wenn die äußeren Schichten deutlichen Schaden nach ZAV nehmen, ist der Visus sehr schlecht (Chen, Xia et al. 2016).

Dass im akuten Stadium des ZAV ebenfalls eine höhere Schichtdicke mit einem besseren Visus korreliert, könnte mit beginnenden Reparaturmechanismen im Sinne glialer Proliferation zusammenhängen, die bei kompletter Ischämie ausbleiben (Spencer W. 2011). Da im akuten Stadium eine verdickte Netzhautschicht für ein größeres Ischämie-bedingtes Ödem spricht und somit für einen größeren Schaden und einen schlechteren Visus.

4.3 Therapieansätze

Beim nicht-arteriitischen ZAV gibt es bislang keine Therapie, deren Effekt mit hohem Evidenzgrad nachgewiesen wurde (DOG 2016, Sharma, Newman et al. 2019). Es wurden bei den Patienten, wenn möglich, die damals nach den Leitlinien der DOG empfohlenen Maßnahmen durchgeführt: Reduzierung des Augeninnendrucks durch Gabe von 500mg Acetazolamid intravenös, lokaler Augentropfen (z.B. Betablocker) oder Parazentese sowie Reduzierung der Blutviskosität durch isovolämische Hämodilution bei einem Hämatokrit-Wert von über 40%, Gabe von Heparinbolus 5000IU Einheiten intravenös oder ASS100 oral über 6 Monate (Neubauer, Mueller et al. 2000, Mueller, Neubauer et al. 2003, DOG 2016). Eine Parazentese zur Augeninndrucksenkung wird in den neuen Leitlinien seit 2016 wegen schwerwiegender Komplikationen wie einer Endophthalmitis, nicht mehr empfohlen. Eine intravenöse Heparingabe zur Emboluslösung nach akutem ZAV wird ebenfalls mangels Nachweises eines Nutzens nicht mehr empfohlen (DOG 2016, Biousse, Nahab et al. 2018). Da die Patienten jedoch vor 2016 behandelt wurden, bekamen einige Patienten, bei denen ein Nutzen dieser Therapien erhofft wurde, diese Behandlung.

Es zeigte sich bei den Patienten weder nach einem Heparinbolus noch nach einer Parazentese eine Visus-Verbesserung. Auch im Bezug auf die Schichtdicken wurden ebenfalls fast keine Unterschiede zwischen Patienten mit und ohne Heparinbolus bzw. Parazentese nachgewiesen (Tab.8-15). Lediglich an dem Messpunkt ÄSF-BM wurde eine Änderung im Endstadium nach Heparinbolus gemessen. Es zeigte sich bei Patienten ohne Heparinbolus eine etwas dickere Schichtdicke an dem Messpunkt (71,6±4,8µm) als bei den Patienten mit Heparinbolus (66±0 µm) (Tab.10). Dies kann damit erklärt werden, dass, wie bereits oben beschrieben, es im Endstadium des ZAV zu einer geringen Dickenzunahme der äußeren Schichten durch Einwanderung von Gliazellen und fibrotischen Umbauprozessen kommen kann (Spencer W. 2011).

Demnach würde bei einer schnelleren besseren Durchblutung nach Heparinbolus der Schaden der, auch äußeren, Netzhaut geringer ausfallen und die Dickenzunahme der äußeren Netzhaut geringer sein als bei Patienten ohne Heparinbolus, was zu dem Ergebnis passen würde. Allerdings ist in meiner Studie die geringe Fallzahl (2 Patienten mit Heparinbolus) zu beachten.

Dieses Ergebnis deckt sich mit der Studie von Mueller et al., in der ebenfalls keine nachweisliche Visus-Besserung nach einem Heparinbolus nachgewiesen wurde. Mueller et al. zeigten in ihrer retrospektiven klinischen Studie, dass es keine signifikante Visusbesserung der betroffenen Augen vor und nach Gabe eines Heparinbolus nach ZAV gab (Mueller, Neubauer et al. 2003). Studien die den Einfluss eines Heparinbolus auf die Schichtdicken beschreiben, existieren bisher nicht.

Auch das Ausbleiben von messbaren Visusveränderungen nach Kammerwasserablassung per Parazentese bei den Patienten, deckt sich mit klinischen Studien, in denen ebenfalls keine Verbesserung des Visus nach Parazentese gesehen wurde (Mueller, Neubauer et al. 2003, Fiess, Cal et al. 2014). Mueller et al. verglichen den Visus vor und nach Parazentese. Es wurde auch hier kein signifikanter Unterschied festgestellt (Mueller, Neubauer et al. 2003). Fiess et al. untersuchten ebenfalls den visuellen Unterschied vor und nach Parazentese, auch abhängig von der Zeit des Eingriffs nach Einsetzen der ersten Symptome eines ZAV (z.B. Visusverlust). Es wurde auch hier, wie in meiner Studie, kein Einfluss einer Parazentese auf den Endvisus nachgewiesen (Fiess, Cal et al. 2014). Eine Untersuchung des Einflusses einer Parazentese auf die Schichtdicken nach ZAV wurde bisher in keiner weiteren Studie untersucht. Insgesamt ist in meiner Studie eine sehr geringe Patienten-Fallzahl mit Parazentese zu beachten (3 Patienten bei akutem ZAV und ein Patient im finalen Stadium des ZAV).

4.4 Zusammenfassung und Schlussfolgerung

Insgesamt wurde in meiner Arbeit gezeigt, dass es nach akutem ZAV zu einer Schichtdickenzunahme der inneren Schichten GZS, IPS, IKS und ÄPS, und im finalen Stadium zu einer Schichtdickenabnahme der inneren Schichten kommt. Dies ist konsistent mit histologischen Beobachtungen nach ZAV am Mausmodell (Goldenberg-Cohen, Dadon et al. 2008). Die äußere Netzhaut (ÄSF-BM), die durch die Aderhaut versorgt wird, zeigt keine Dickenänderung beim akuten oder finalen ZAV, was sich ebenfalls mit experimentellen Untersuchungen deckt. Die Schichtdickenveränderungen

der Netzhaut nach ZAV in der OCT, spiegeln die Veränderungen auf zellulärer Ebene wider.

Es zeigte sich weder ein Einfluss eines Heparinbolus noch einer Parazentese auf den Endvisus im akuten und im finalen Stadium des ZAV, was sich mit klinischen Studien deckt (Mueller, Neubauer et al. 2003, Fiess, Cal et al. 2014). Auch auf die Schichtdicken zeigte sich fast kein Einfluss der Therapieoptionen im akuten und finalen Stadium. Lediglich an dem Messpunkt ÄSF-BM N zeigte sich eine verdünnte Schicht nach Heparinbolus, was mit glialen Umbauvorgängen erklärt werden kann. Um eine sichere Aussage über den Einfluss eines Heparinbolus und eine plötzliche Augeninnendrucksenkung per Parazentese auf die Schichtdicken und den Visus treffen zu können, ist ein größeres Patientenkollektiv notwendig.

In meiner Studie konnte ein Zusammenhang der Gesamtschichtdicke an dem Messpunkt M im Endstadium des ZAV und dem Endvisus festgestellt werden, was sich mit der klinischen OCT-Studie von Cho et al. deckt (Cho, Kim et al. 2010). Im Akutstadium des ZAV fand sich an meinen Messpunkten keine Korrelation der Gesamtschichtdicke zum Visus, was sich mit der OCT-Studie von Kim et al. deckt (Kim, Kim et al. 2018). Allerdings konnte in anderen Studien eine Korrelation im akuten Stadium der Gesamtdicke und dem Visus parafoveal nachgewiesen werden (Kim, Kim et al. 2018, Yang, Liu et al. 2019). Außerdem wurde bereits gezeigt, dass der Einschluss weiterer prognostischer Parameter wie der Hyperreflektivität der Schichten oder der Trennschärfe der einzelnen Schichten in der OCT, eine genauere prognostische Aussage über den Endvisus nach ZAV zulässt (Yu, Pang et al. 2014, Chen, Xia et al. 2016).

Um eine prognostische Aussagekraft über den Visus zu erhalten, erscheinen weitere Untersuchungen an weiteren Messpunkten und zur Hyperreflektivität der Schichten in der OCT von Interesse.

5 Literaturverzeichnis

Ahn, S. J., S. J. Woo, K. H. Park, C. Jung, J. H. Hong and M. K. Han (2015). "Retinal and choroidal changes and visual outcome in central retinal artery occlusion: an optical coherence tomography study." <u>Am J Ophthalmol</u> **159**(4): 667-676.

Anderhuber, F. P. F. S., J. (2012). <u>Waldeyer-Anatomie des Menschen, 19. Auflage</u>. Berlin, De Gruyter.

Benninghoff A.; Drenckhahn, D. (2008). <u>Anatomie-Makroskopishe Anatomie.</u> <u>Histologie, Embryologie, Zellbiologie</u>. Amsterdam, Urban und Fischer in Elsevier.

Biousse, V., O. Calvetti, B. B. Bruce and N. J. Newman (2007). "Thrombolysis for central retinal artery occlusion." <u>J Neuroophthalmol</u> **27**(3): 215-230.

Biousse, V., F. Nahab and N. J. Newman (2018). "Management of Acute Retinal Ischemia: Follow the Guidelines!" <u>Ophthalmology</u> **125**(10): 1597-1607.

Chen, C. S., A. W. Lee, B. Campbell, T. Lee, M. Paine, C. Fraser, J. Grigg and R. Markus (2011). "Efficacy of intravenous tissue-type plasminogen activator in central retinal artery occlusion: report from a randomized, controlled trial." <u>Stroke</u> **42**(8): 2229-2234.

Chen, H., X. Chen, Z. Qiu, D. Xiang, W. Chen, F. Shi, J. Zheng, W. Zhu and M. Sonka (2015). "Quantitative analysis of retinal layers' optical intensities on 3D optical coherence tomography for central retinal artery occlusion." <u>Sci Rep</u> **5**: 9269.

Chen, H., H. Xia, Z. Qiu, W. Chen and X. Chen (2016). "Correlation of Optical Intensity on Optical Coherence Tomography and Visual Outcome in Central Retinal Artery Occlusion." <u>Retina</u> **36**(10): 1964-1970.

Cho, H. J., C. G. Kim, J. W. Kim and J. H. Lee (2010). "The relationship between the visual prognoses of branch retinal artery obstruction and foveal thickness on OCT." <u>Korean J Ophthalmol</u> **24**(5): 297-301.

Cornut, P. L., J. Bieber, S. Beccat, V. Fortoul, M. Poli, A. Feldman, P. Denis and C. Burillon (2012). "[Spectral domain OCT in eyes with retinal artery occlusion]." <u>J Fr</u> <u>Ophtalmol</u> **35**(8): 606-613.

Cugati, S., D. D. Varma, C. S. Chen and A. W. Lee (2013). "Treatment options for central retinal artery occlusion." <u>Curr Treat Options Neurol</u> **15**(1): 63-77.

Dattilo, M., N. J. Newman and V. Biousse (2018). "Acute retinal arterial ischemia." <u>Ann</u> <u>Eve Sci</u> **3**.

DOG, R. u. B. (2016). "Leitlinie Zentralarterienverschluss von DOG, RG und BVA." <u>AWMF-Register Nr. 045/013</u>.

Dominguez-Vicent, A., R. Brautaset and A. P. Venkataraman (2019). "Repeatability of quantitative measurements of retinal layers with SD-OCT and agreement between vertical and horizontal scan protocols in healthy eyes." <u>PLoS One</u> **14**(8): e0221466.

Drexler, W. and J. G. Fujimoto (2008). "State-of-the-art retinal optical coherence tomography." Prog Retin Eye Res **27**(1): 45-88.

Feltgen, N., A. Neubauer, B. Jurklies, C. Schmoor, D. Schmidt, J. Wanke, H. Maier-Lenz, M. Schumacher and E. A.-S. Group (2006). "Multicenter study of the European Assessment Group for Lysis in the Eye (EAGLE) for the treatment of central retinal artery occlusion: design issues and implications. EAGLE Study report no. 1 : EAGLE Study report no. 1." <u>Graefes Arch Clin Exp Ophthalmol</u> **244**(8): 950-956.

Fiess, A., O. Cal, S. Kehrein, S. Halstenberg, I. Frisch and U. H. Steinhorst (2014). "Anterior chamber paracentesis after central retinal artery occlusion: a tenable therapy?" <u>BMC Ophthalmol</u> **14**: 28.

Furashova, O. and E. Matthe (2017). "Retinal Changes in Different Grades of Retinal Artery Occlusion: An Optical Coherence Tomography Study." <u>Invest Ophthalmol Vis</u> <u>Sci</u> **58**(12): 5209-5216.

Goldenberg-Cohen, N., S. Dadon, B. C. Avraham, M. Kramer, M. Hasanreisoglu, I. Eldar, D. Weinberger and I. Bahar (2008). "Molecular and histological changes

following central retinal artery occlusion in a mouse model." Exp Eye Res 87(4): 327-333.

Hayreh, S. S. (1971). "Pathogenesis of occlusion of the central retinal vessels." <u>Am J</u> <u>Ophthalmol</u> **72**(5): 998-1011.

Hayreh, S. S. (2011). "Acute retinal arterial occlusive disorders." <u>Prog Retin Eye Res</u> **30**(5): 359-394.

Hayreh, S. S. (2014). "Ocular vascular occlusive disorders: natural history of visual outcome." <u>Prog Retin Eye Res</u> **41**: 1-25.

Hayreh, S. S. (2018). "Central retinal artery occlusion." <u>Indian J Ophthalmol</u> **66**(12): 1684-1694.

Hayreh, S. S. and M. B. Zimmerman (2005). "Central retinal artery occlusion: visual outcome." <u>Am J Ophthalmol</u> **140**(3): 376-391.

Hayreh, S. S., M. B. Zimmerman, A. Kimura and A. Sanon (2004). "Central retinal artery occlusion. Retinal survival time." <u>Exp Eye Res</u> **78**(3): 723-736.

HeidelbergEngineering (2010). <u>Spectralis OCT Gebrauchsanweisung</u>. Heidelberg, Heidelberg Engineering.

Höfler, G. K. H. (2019). Lehrbuch Pathologie, Elsevier, Amsterdam, Niederlande.

Joussen, A. (2012). <u>Retinale Gefäßverschlüsse</u>, Springer-Verlag Berlin Heidelberg New York ISBN-13 978-3-642-18020-0.

Kanski J., B. B. (2012). <u>Klinische Ophthalmologie Lehrbuch und Atlas</u>. Amsterdam, Urban & Fischer in Elsevier, 7. Auflage, 978-3-437-23473-6 (ISBN).

Kim, H., H. K. Kim, J. Y. Yang and S. S. Kim (2018). "Optical Coherence Tomography Measurement and Visual Outcome in Acute Central Retinal Artery Occlusion." <u>Korean</u> <u>J Ophthalmol</u> **32**(4): 303-311.

Kim, H. M., Y. J. Park, K. H. Park and S. J. Woo (2019). "Visual field defects and changes in central retinal artery occlusion." <u>PLoS One</u> **14**(1): e0209118.

Kim, M. S., K. M. Kim, H. B. Lim, Y. J. Jo and J. Y. Kim (2018). "Longitudinal Changes of Retinal Thicknesses in Branch Retinal Artery Occlusion: Spectral-Domain Optical Coherence Tomography Study." <u>Invest Ophthalmol Vis Sci</u> **59**(11): 4731-4737.

Kolb, H. (1995). Simple Anatomy of the Retina. <u>Webvision: The Organization of the</u> <u>Retina and Visual System</u>. H. Kolb, E. Fernandez and R. Nelson. Salt Lake City (UT).

Leung, C. K., C. C. Tham, S. Mohammed, E. Y. Li, K. S. Leung, W. M. Chan and D. S. Lam (2007). "In vivo measurements of macular and nerve fibre layer thickness in retinal arterial occlusion." <u>Eye (Lond)</u> **21**(12): 1464-1468.

Limaye, K., M. Wall, S. Uwaydat, S. Ali, A. Shaban, S. Al Kasab and H. Adams, Jr. (2018). "Is Management of Central Retinal Artery Occlusion the Next Frontier in Cerebrovascular Diseases?" <u>J Stroke Cerebrovasc Dis</u> **27**(10): 2781-2791.

Man, V., I. Hecht, M. Talitman, A. Hilely, M. Midlij, Z. Burgansky-Eliash and A. Achiron (2017). "Treatment of retinal artery occlusion using transluminal Nd:YAG laser: a systematic review and meta-analysis." <u>Graefes Arch Clin Exp Ophthalmol</u> **255**(10): 1869-1877.

Matthe, E., P. Eulitz and O. Furashova (2019). "ACUTE RETINAL ISCHEMIA IN CENTRAL VERSUS BRANCH RETINAL ARTERY OCCLUSION: Changes in Retinal Layers' Thickness on Spectral-Domain Optical Coherence Tomography in Different Grades of Retinal Ischemia." <u>Retina</u>.

Mehta, N., R. D. Marco, R. Goldhardt and Y. Modi (2017). "Central Retinal Artery Occlusion: Acute Management and Treatment." <u>Curr Ophthalmol Rep</u> **5**(2): 149-159.

Meyer, J., R. Karri, H. Danesh-Meyer, K. Drummond and A. Symons (2021). "A normative database of A-scan data using the Heidelberg Spectralis Spectral Domain Optical Coherence Tomography machine." <u>PLoS One</u> **16**(7): e0253720.

Mirshahi (2008). "Gefäßverschlüsse der Netzhaut: Eine interdisziplinäre Herausforderung." <u>Dtsch Arztebl 2008; 105(26): 474-9;</u>.

Mueller, A. J., A. S. Neubauer, U. Schaller, A. Kampik and E. European Assessment Group for Lysis in the (2003). "Evaluation of minimally invasive therapies and rationale for a prospective randomized trial to evaluate selective intra-arterial lysis for clinically complete central retinal artery occlusion." <u>Arch Ophthalmol</u> **121**(10): 1377-1381.

Naumann (1997). "Pathologie des Auges." Springer, Berlin, Heidelberg.

Neubauer, A. S., A. J. Mueller, S. Schriever, M. Gruterich, M. Ulbig and A. Kampik (2000). "[Minimally invasive therapy for clinically complete central retinal artery occlusion--results and meta-analysis of literature]." <u>Klin Monbl Augenheilkd</u> **217**(1): 30-36.

Nowak, R. J., H. Amin, K. Robeson and J. L. Schindler (2012). "Acute central retinal artery occlusion treated with intravenous recombinant tissue plasminogen activator." <u>J</u> <u>Stroke Cerebrovasc Dis</u> **21**(8): 913 e915-918.

Olsen, T. W., J. S. Pulido, J. C. Folk, L. Hyman, C. J. Flaxel and R. A. Adelman (2017). "Retinal and Ophthalmic Artery Occlusions Preferred Practice Pattern(R)." <u>Ophthalmology</u> **124**(2): P120-P143.

Pielen, A., S. Pantenburg, C. Schmoor, M. Schumacher, N. Feltgen, B. Junker, J. Callizo and E. S. Group (2015). "Predictors of prognosis and treatment outcome in central retinal artery occlusion: local intra-arterial fibrinolysis vs. conservative treatment." <u>Neuroradiology</u> **57**(10): 1055-1062.

Podoleanu, A. G. (2012). "Optical coherence tomography." <u>J Microsc</u> 247(3): 209-219.

Prel, J.-B. d. R., Bernd; Hommel, Gerhard; Blettner, Maria (2010/5). "Auswahl statistischer Testverfahren." <u>Deutsches Ärzteblatt</u> **107(19): 343-8**.

Puzyeyeva, O., W. C. Lam, J. G. Flanagan, M. H. Brent, R. G. Devenyi, M. S. Mandelcorn, T. Wong and C. Hudson (2011). "High-resolution optical coherence tomography retinal imaging: a case series illustrating potential and limitations." J Ophthalmol **2011**: 764183.

Ritter, M., S. Sacu, G. G. Deak, K. Kircher, R. G. Sayegh, C. Pruente and U. M. Schmidt-Erfurth (2012). "In vivo identification of alteration of inner neurosensory layers in branch retinal artery occlusion." <u>Br J Ophthalmol</u> **96**(2): 201-207.

Rudkin, A. K., A. W. Lee, E. Aldrich, N. R. Miller and C. S. Chen (2010). "Clinical characteristics and outcome of current standard management of central retinal artery occlusion." <u>Clin Experiment Ophthalmol</u> **38**(5): 496-501.

Rudkin, A. K., A. W. Lee and C. S. Chen (2009). "Central retinal artery occlusion: timing and mode of presentation." <u>Eur J Neurol</u> **16**(6): 674-677.

Rudkin, A. K., A. W. Lee and C. S. Chen (2010). "Vascular risk factors for central retinal artery occlusion." <u>Eye (Lond)</u> **24**(4): 678-681.

Sachs, L. H., Jürgen (2018). <u>Angewandte Statistik: Anwendung statistischer Methoden.</u> Berlin, Springer Spectrum.

Sachsenweger, M. K., V.; Nasemann, J..; Ugi, J. (2003). <u>Duale Reihe Augenheilkunde.</u> <u>2. überarbeitete Auflage</u>. Stuttgart, Georg Thieme Verlag KG.

Sakata, L. M., J. Deleon-Ortega, V. Sakata and C. A. Girkin (2009). "Optical coherence tomography of the retina and optic nerve - a review." <u>Clin Experiment Ophthalmol</u> **37**(1): 90-99.

Schmidt, D. P., J. Schulte-Monting and M. Schumacher (2002). "Prognosis of central retinal artery occlusion: local intraarterial fibrinolysis versus conservative treatment." <u>AJNR Am J Neuroradiol</u> **23**(8): 1301-1307.

Schnichels, S., M. Blak, J. Hurst, T. Dorfi, K. U. Bartz-Schmidt, F. Ziemssen, M. S. Spitzer and M. Schultheiss (2017). "Establishment of a retinal hypoxia organ culture model." <u>Biol Open</u> **6**(7): 1056-1064.

Schumacher, M., D. Schmidt, B. Jurklies, C. Gall, I. Wanke, C. Schmoor, H. Maier-Lenz, L. Solymosi, H. Brueckmann, A. S. Neubauer, A. Wolf, N. Feltgen and E. A.-S. Group (2010). "Central retinal artery occlusion: local intra-arterial fibrinolysis versus conservative treatment, a multicenter randomized trial." <u>Ophthalmology</u> **117**(7): 1367-1375 e1361. Sharma, R. A., M. Dattilo, N. J. Newman and V. Biousse (2018). "Treatment of Nonarteritic Acute Central Retinal Artery Occlusion." <u>Asia Pac J Ophthalmol (Phila)</u> 7(4): 235-241.

Sharma, R. A., N. J. Newman and V. Biousse (2019). "New concepts on acute ocular ischemia." <u>Curr Opin Neurol</u> **32**(1): 19-24.

Spencer W., Z., R. (2011). Ocular pathology, 4. Auflage. New York, W. B. Saunders.

Takata, Y., Y. Nitta, A. Miyakoshi and A. Hayashi (2018). "Retinal Endovascular Surgery with Tissue Plasminogen Activator Injection for Central Retinal Artery Occlusion." <u>Case Rep Ophthalmol</u> **9**(2): 327-332.

Tobalem, S., J. S. Schutz and A. Chronopoulos (2018). "Central retinal artery occlusion - rethinking retinal survival time." <u>BMC Ophthalmol</u> **18**(1): 101.

Varma, D. D., S. Cugati, A. W. Lee and C. S. Chen (2013). "A review of central retinal artery occlusion: clinical presentation and management." <u>Eve (Lond)</u> **27**(6): 688-697.

vonGraefes, A. (1859). "Ueber Embolie der Arteria centralis retinae als Ursache plotzlicher Erblindung." <u>Arch Ophthalmol 1859; 5:136–157</u>.

Wolf, S., A. Hoberg, B. Bertram, F. Jung, H. Kiesewetter and M. Reim (1989). "[Video fluorescein angiography follow-up of patients with retinal artery occlusion]." <u>Klin Monbl</u> <u>Augenheilkd</u> **195**(3): 154-160.

Wu, X. J., F. Gao, X. Liu and Q. Zhao (2016). "Observation on therapeutic efficacy of rt-PA intravenous thrombolysis combined with compound anisodine injection on central retinal artery occlusion." <u>Exp Ther Med</u> **12**(4): 2617-2621.

Yang, S., X. Liu, H. Li, J. Xu and F. Wang (2019). "Optical coherence tomography angiography characteristics of acute retinal arterial occlusion." <u>BMC Ophthalmol</u> **19**(1): 147.

Yu, S., C. E. Pang, Y. Gong, K. B. Freund, L. A. Yannuzzi, E. Rahimy, B. J. Lujan, H. Tabandeh, M. J. Cooney and D. Sarraf (2014). "The Spectrum of Superficial and Deep Capillary Ischemia in Retinal Artery Occlusion." <u>Am J Ophthalmol</u>.

6 Anhang

					Global			RNFL			GZS+ IPS			ÄPS+IKS				ĀKS+ISF				ÄSF-BM								
Pat.	Alter	Geschl.	T1	T2	м	N2	T1	T2	м	N2	T1	T2	м	N2	T1	T2	м	N2	T1	T2	м	N2	T1	T2	м	N2	Visus	VA	ΡZ	HB
1	70,59	0	271	349	217	453	22	23		83	32	51		77	66	84		108	81	121	112	107	70	70	102	78	1,6	4	0	1
2	78,58	1	297	438	284	385	31	20		34	65	139		130	71	101		76	61	98	185	74	69	80	90	71	2,0	2	0	1
3	78,09	1	325	405	267	409	15	4		14	70	103		101	92	106		102	74	116	163	105	74	76	89	87	2,0	6	0	1
4	73,75	1	254	294	338	353	37	4		23	48	77		70	28	63		89	76	88	245	115	65	62	93	56	2,0	0	0	0
5	94,65	0	342	468	344	505	24	50		75	83	149		117	93	108		169	81	86	260	88	61	75	58	56	2,1	2	0	1
6	72,74	0	231	298	260	426	5	19		52	72	133		87	52	22		95	49	69	145	136	53	55	68	56	2,0	0	0	0
7	78,50	0	368	439	436	455	20	18		72	95	147		78	104	111		127	86	98	183	120	63	65	98	58	2,0	7	0	0
8	81,21	1	399	548	442	574	57	49		25	96	171		176	103	138		184	89	127	137	117	54	63	62	72	2,0	2	0	0
9	79,6	0	334	353	454	451	44	77		63	61	38		157	78	102		63	83	73	346	103	68	63	80	65	2,0	4	0	0
10	79,9	0	407	572	549	652	41	68		79	90	165		231	98	135		122	116	138	278	143	62	66	80	77	2,0	1	0	0
11	79,26	0	256	366	301	414	7	76		51	54	47		108	64	72		86	59	101	202	97	72	70	69	72	1,9	0	0	0
12	73,61	0	360	472	770	685	21	23		28	62	135		244	108	89		213	109	151	423	131	60	74	79	69	1,3	1	0	1
13	68,06	1	270	337	216	394	29	28		33	44	76		115	62	92		94	72	82	131	86	63	59	72	66	2,0	3	0	1
14	64,27	0	314	451	349	584	34	48		73	79	134		269	70	121		99	56	71	230	83	75	77	90	60	2,1	3	1	0
15	74,18	1	236	295	135	359	24	19		43	32	45		61	71	107		109	46	63	64	75	63	61	65	71	2,1	0	0	1
16	66,46	0	327	400	282	543	24	31		64	76	114		168	88	103		149	69	86	176	96	70	66	75	66	2,0	4	0	0
17	78,11	1	262	368	234	412	19	18		63	67	112		61	47	69		100	61	94	142	114	68	75	76	74	2,1	0	0	0
18	61,15	0	270	348	301	432	12	51		45	68	55		125	66	109		66	59	67	192	124	65	66	95	72	2,0	2	0	0
19	24,42	0	308	466	827	527	78	91		82	21	14		65	88	217		219	56	75	424	91	65	69	120	70	2,0	1	0	0
20	61,32	1	302	383	271	418	42	13		51	59	75		102	78	129		98	60	95	151	108	63	71	90	59	2,1	3	0	1
21	69,78	1	398	521	434	534	14	36		61	145	153		155	90	172		122	79	96	292	129	70	64	71	67	2,0	1	0	0
22	74,78	0	324	450	681	585	56	15		77	57	149		227	61	121		70	88	91	238	136	62	74	90	75	2,0	0	1	1
23	80,33	0	296	377	234	371	37	21		36	71	115		84	70	80		114	50	93	124	70	68	68	75	67	2,0	1	0	0
24	83,82	1	312	387	268	499	21	10		46	90	77		163	75	142		98	57	94	145	127	69	64	64	65	2,0	3	0	0
25	43,23	1	235	296	266	388	4	30		37	66	67		85	37	54		104	63	79	147	92	65	66	87	70	2,0	2	1	1
26	90,85	0	269	365	212	445	12	80		30	55	109		130	66	26		109	64	82	115	102	72	68	80	74	2,0	2	0	1
27	70,29	1	295	411	275	496	7	11		99	81	113		140	69	128		84	66	90	165	102	72	69	75	71	1,9	3	0	1
28	58,05	1	293	334	208	321	8	21		27	100	87		65	59	67		81	61	94	113	86	65	65	73	62	2,0	1	0	1
29	63,04	1	301	374	503	422	25	35		23	61	94		154	79	87		108	69	88	174	69	67	70	116	68	1,9	1	0	1
30	19,55	0	242	309	295	350	15	20		26	59	83		97	38	72		73	67	69	154	86	63	65	81	68	1,9	1	0	1
31	63,14	0	275	353	238	451	21	64		71	62	80		145	69	57		73	58	87	109	87	65	65	95	75	2,1	2	0	0
32	50,9	1	241	311	266	327	28	19		25	44	54		79	46	81		73	55	87	152	73	68	70	93	77	2,1	1	0	0
33	86,53	0	288	365	204	431	2	31		73	88	90		75	80	81		89	46	91	96	123	72	72	104	71	2,1	1	0	0
34																														
35																														
36																														

Tabelle 16: Rohdaten des Patientenkollektivs mit akutem ZAV. Gemessene Schichtdicken je Patient (Pat.), Schicht (global, RNFL, GZS+IPS, ÄPS+IKS, ÄKS+ISF, ÄSF-BM) und Messpunkt (T1, T2, M, N) in µm. Alter in Jahren. Geschlecht (Geschl.): 0 entspricht männlich, 1 entspricht weiblich. Visus in logMar. Verschlussalter (VA) in Tagen, Parazentese (PZ): 0 entspricht es wurde keine Parazentese durchgeführt, 1 entspricht es wurde eine Parazentese durchgeführt, Heparinbolus (HB): 0 entspricht es wurde kein Heparinbolus gegeben.

			global			RNFL			GZS+IPS ÄF				ÄPS	ÄPS+IKS			ÄKS+ISF				ÄSF	-BM			Visus	VA	PZ	H B		
Pat-	Alter	Geschl	T1	T2	м	N2	T1	T2	м	N2	т1	Т2	м	N2	T1	Т2	м	N2	T1	Т2	м	N2	T1	Т2	м	N2				
1																														
2	78,58	1	187	211	234	233	18	26		23	23	15		17	18	15		36	58	78	127	91	70	77	72	66	1,3	290	0	1
3																														
4	73,75	1	220	224	237	240	10	20		14	20	23		23	68	51		50	49	70	82	79	63	70	73	74	2,0	159	0	0
5																														
6	72,74	0	196	211	238	203	6	12		11	23	15		17	39	52		30	66	61	111	79	62	71	62	66	1,0	337	0	0
7																														
8	81,21	1	183	215	182	201	9	10		9	28	27		25	17	22		23	71	93	86	66	58	63	74	78	2,0	458	0	0
9	79,6	0	221	264	211	282	10	12		28	17	47		57	33	45		28	85	96	129	94	74	66	72	75	2,0	100	0	0
10	79,9	0	169	184	232	175	16	19		25	2	11		16	28	25		22	52	55	131	38	71	74	75	74	2,0	358	0	0
11																														
12																														
13	86,83	1	180	203	222	205	7	11		29	18	27		22	36	29		7	49	74	112	81	70	62	80	66	2,0	130	0	1
14	64,27	0	179	224	212	254	11	17		12	15	25		44	23	32		26	66	84	115	106	64	66	74	66	2,0	61	1	0
15																														
16	66,46	0	207	194	219	220	17	9		15	41	27		45	14	10		22	58	81	138	68	77	67	68	70	1,6	103	0	0
17	78,98	1	195	201	235	215	9	7		6	15	11		25	26	44		23	81	69	141	89	64	70	78	72	1,9	109	0	0
18	61,45	0	179	205	237	212	3	10		5	8	7		7	27	31		35	69	83	124	86	72	74	76	79	1,3	116	0	0
19	24,8	0	175	194	193	187	7	14		16	14	25		23	23	25		18	61	55	94	55	70	75	80	75	2,1	113	0	0
20																														
21	70,1	1	197	216	207	230	9	6		16	19	20		16	33	43		41	66	76	104	81	70	71	79	76	2,0	145	0	0
22																														
23																														
24	84,55	1	189	190	240	208	7	10		19	13	15		26	23	22		20	73	72	118	75	73	71	67	68	2,0	126	0	0
25																														
26																														
27																														
28																														
29																														
30																														
31																														
32																														

33																											
34	62,58	1	176	189	193	237	7	3	21	21	22	36	31	30	30	52	70	108	87	65	64	67	63	2,0	102	0	0
35	68,5	0	219	238	209	265	9	0	24	23	26	23	31	32	65	88	111	105	84	68	69	83	69	2,0	89	0	0
36	60,82	1	202	215	242	239	4	4	12	27	22	28	30	35	45	68	84	132	85	73	70	67	69	1,6	357	0	0

Tabelle 17: Rohdaten des Patientenkollektivs mit finalem ZAV. Gemessene Schichtdicken je Patient (Pat.), Schicht (global, RNFL, GZS+IPS, ÄPS+IKS, ÄKS+ISF, ÄSF-BM) und Messpunkt (T1, T2, M, N) in µm. Alter in Jahren. Geschlecht (Geschl.): 0 entspricht männlich, 1 entspricht weiblich. Visus in logMar. Verschlussalter (VA) in Tagen, Parazentese (PZ): 0 entspricht es wurde keine Parazentese durchgeführt, 1 entspricht es wurde eine Parazentese durchgeführt, Heparinbolus (HB): 0 entspricht es wurde kein Heparinbolus gegeben.

			global			RNFL			GZS+IPS			ÄPS+IKS				ÄKS+ISF					ÄSF-	BM			Visus		
Pat.	Alter	Geschlecht	T1	T2	м	N2	T1	T2	м	N2	T1	T2	м	N2	T1	T2	м	N2	T1	T2	м	N2	T1	T2	М	N2	
1	70,59	0	246	307	211	329	14	19		44	57	78		83	46	61		53	62	83	129	81	67	66	61	68	0,3
2	78,58	1	234	300	235	309	8	21		51	60	85		73	46	67		51	53	62	137	61	67	65	73	73	0,0
3	78,09	1	247	297	243	312	16	35		32	58	45		67	60	68		65	56	81	139	79	67	68	79	69	0,2
4	73,75	1	236	274	245	304	10	35		47	64	60		59	44	49		56	54	63	152	69	64	67	83	73	0,1
5	94,65	0	233	299	224	325	23	29		29	50	48		72	43	63		66	55	81	119	79	62	78	89	79	0,1
6	72,74	0	234	276	236	310	18	23		23	39	60		75	55	65		71	55	69	140	78	67	59	75	63	0,0
7	78,5	1	252	294	243	309	12	25		34	49	64		64	51	61		58	81	84	141	95	59	60	57	58	0,2
8	81,21	1	246	285	157	346	20	5		46	48	81		75	50	58		81	65	74	76	84	63	67	73	60	0,2
9	79,6	0	236	283	199	299	18	28		47	47	67		57	45	64		63	61	66	107	73	65	58	79	59	0,2
10	79,9	0	247	318	260	332	17	19		31	60	99		82	45	78		64	62	62	137	93	63	60	95	62	0,0
11	79,26	0	268	317	259	324	30	37		27	58	87		69	43	55		66	68	73	157	96	69	65	73	66	0,1
12	73,61	0	245	306	214	314	22	24		60	48	82		60	47	61		60	66	73	133	76	62	66	72	58	0,3
13	68,06	1	224	247	216	277	14	25		32	35	44		46	46	55		50	63	61	116	89	66	62	72	60	0,0
14	64,27	0	235	280	222	340	18	25		32	56	68		94	44	51		69	61	76	128	81	56	60	79	64	0,1
15	74,18	1	216	256	200	297	17	20		48	29	42		51	53	63		59	50	68	106	77	67	63	75	62	0,1
16	66,46	0	228	299	241	309	19	6		46	39	88		77	56	75		63	49	62	131	60	65	68	76	63	0,2
17	78,11	1	212	273	230	296	18	23		46	37	58		56	39	58		46	52	63	126	83	66	71	80	65	0,2
18	61,15	0	214	276	220	298	22	24		53	42	69		51	38	58		69	41	52	130	57	71	73	71	68	0,3
19	24,42	0	228	283	216	300	16	33		21	51	71		89	52	59		79	39	56	116	45	70	64	79	66	-0,1
20	61,32	1	242	282	237	326	21	19		49	41	62		73	45	67		52	62	66	135	88	73	68	84	64	0,1
21	69,78	1	249	305	241	304	19	16		26	40	90		78	49	67		64	78	62	137	69	63	70	88	67	0,0
22	74,78	0	232	271	213	299	16	27		27	59	49		74	46	69		68	48	60	116	70	63	66	73	60	0,2
23	80,33	0	234	280	226	309	19	35		34	47	60		84	56	63		93	44	61	135	40	68	61	71	58	0,2
24	83,82	1	235	272	221	332	28	33		27	51	47		83	24	46		62	70	80	103	87	62	66	88	73	0,4
25	43,23	1	229	265	249	323	20	20		51	37	69		64	44	48		59	62	65	142	80	66	63	76	69	0
26	90,85	0	226	259	213	307	13	14		33	48	73		65	38	50		83	61	54	112	64	66	68	79	62	0
27	70,29	1	249	299	238	330	21	20		42	52	79		85	41	58		55	65	77	136	85	70	65	75	63	0,1
28	58,05	1	228	269	215	281	13	19		20	56	70		60	44	49		54	47	64	125	82	68	67	80	65	0,1

29	63,04	1	216	266	276	294	18	15	18	40	71	80	41	63	64	46	45	109	59	71	72	86	73	0,1
30	19,55	0	230	280	256	303	17	28	32	47	61	70	48	79	74	50	47	135	51	68	65	88	76	0,0
31	63,14	0	212	253	224	304	14	30	24	38	60	81	48	42	46	38	47	127	89	74	74	77	64	0,1
32	50,9	1	231	278	250	308	17	30	45	41	66	69	45	62	65	52	54	144	60	76	66	83	69	0,0
33	86,53	1	233	264	225	310	13	9	42	64	83	76	32	41	44	49	56	127	72	75	75	82	76	0,1
34	62,58	1	240	280	221	287	11	22	29	45	71	63	56	61	62	64	61	126	66	64	65	83	67	0,0
35	68,5	0	221	271	228	315	11	21	12	36	36	61	47	72	89	54	68	131	84	73	74	82	69	0,1
36	60,82	1	229	273	222	284	17	29	22	53	47	62	39	67	57	52	62	129	73	68	68	79	70	0,1

Tabelle 18: Rohdaten der Referenzaugen. Gemessene Schichtdicken je Patient (Pat.), Schicht (global, RNFL, GZS+IPS, ÄPS+IKS, ÄKS+ISF, ÄSF-BM) und Messpunkt (T1, T2, M, N) in μm. Alter in Jahren. Geschlecht (Geschl.): 0 entspricht männlich, 1 entspricht weiblich. Visus in logMar

Danksagung

Vor allem gilt mein Dank meinem Doktorvater und Betreuer Herrn Professor Doktor Guthoff für die Möglichkeit diese Arbeit durchzuführen. Besonders bedanke ich mich für die stets geduldige und umfassende wissenschaftliche Begleitung.

Außerdem bedanke ich mich bei Katharina für ihre Ratschläge und Motivation die Promotion durchzuführen.

Des Weiteren bedanke ich mich ganz herzlich bei dem Team der Funktionsdiagnostik für die tatkräftige Unterstützung.

Zuletzt gilt mein Dank meiner Familie, die immer für mich da ist.